Low resource sequence tagging using sentence reconstruction

Tal Perl, Sriram Chaudhury, Raja Giryes

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

This work revisits the task of training sequence tagging models with limited resources using transfer learning. We investigate several proposed approaches introduced in recent works and suggest a new loss that relies on sentence reconstruction from normalized embeddings. Specifically, our method demonstrates how by adding a decoding layer for sentence reconstruction, we can improve the performance of various baselines. We show improved results on the CoNLL02 NER and UD 1.2 POS datasets and demonstrate the power of the method for transfer learning with low-resources achieving 0.6 F1 score in Dutch using only one sample from it. The code is publicly available at: https://github.com/tperl/Low-Resource-Sequence-Tagging-using-Sentence-Reconstruction.

Original languageEnglish
Title of host publicationACL 2020 - 58th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages2692-2698
Number of pages7
ISBN (Electronic)9781952148255
DOIs
StatePublished - 2020
Event58th Annual Meeting of the Association for Computational Linguistics, ACL 2020 - Virtual, Online, United States
Duration: 5 Jul 202010 Jul 2020

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
ISSN (Print)0736-587X

Conference

Conference58th Annual Meeting of the Association for Computational Linguistics, ACL 2020
Country/TerritoryUnited States
CityVirtual, Online
Period5/07/2010/07/20

Fingerprint

Dive into the research topics of 'Low resource sequence tagging using sentence reconstruction'. Together they form a unique fingerprint.

Cite this