Low Degree Testing over the Reals

Vipul Arora, Arnab Bhattacharyya, Noah Fleming, Esty Kelman, Yuichi Yoshida

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We study the problem of testing whether a function f : Rn → R is a polynomial of degree at most d in the distribution-free testing model. Here, the distance between functions is measured with respect to an unknown distribution D over Rn from which we can draw samples. In contrast to previous work, we do not assume that D has finite support. We design a tester that given query access to f, and sample access to D, makes poly(d/ε) many queries to f, accepts with probability 1 if f is a polynomial of degree d, and rejects with probability at least 2/3 if every degree-d polynomial P disagrees with f on a set of mass at least ε with respect to D. Our result also holds under mild assumptions when we receive only a polynomial number of bits of precision for each query to f, or when f can only be queried on rational points representable using a logarithmic number of bits. Along the way, we prove a new stability theorem for multivariate polynomials that may be of independent interest.

Original languageEnglish
Title of host publication34th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2023
PublisherAssociation for Computing Machinery
Pages738-792
Number of pages55
ISBN (Electronic)9781611977554
StatePublished - 2023
Externally publishedYes
Event34th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2023 - Florence, Italy
Duration: 22 Jan 202325 Jan 2023

Publication series

NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
Volume2023-January

Conference

Conference34th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2023
Country/TerritoryItaly
CityFlorence
Period22/01/2325/01/23

Fingerprint

Dive into the research topics of 'Low Degree Testing over the Reals'. Together they form a unique fingerprint.

Cite this