Long telomeres do not affect cellular fitness in yeast

Yaniv Harari, Shira Zadok-Laviel, Martin Kupiec

Research output: Contribution to journalArticlepeer-review

Abstract

Telomeres, the ends of the eukaryotic chromosomes, help to maintain the genome’s integrity and thus play important roles in aging and cancer. Telomere length is strictly controlled in all organisms. In humans, telomeres shorten with age, and it has been proposed that telomere shortening may play a causal role in aging. We took advantage of the availability of yeast strains with genetically or physiologically generated differences in telomere length to measure the effect that telomere length may have on cellular growth. By comparing the growth rates affecting telomere length of various yeast mutants we show that there is no correlation between their telomere length and cellular fitness. We also show that wild-type yeast cells carrying extremely long telomeres (~5 times longer than the average) showed no signs of mitotic or meiotic defects, and competition experiments found no differences in growth between strains with normal telomeres and strains with long telomeres. No advantage or disadvantage of cells with long telomeres was detected under stress conditions either. Finally, telomere length had no effect A in a chronological life span assay, which measures survival of post-mitotic-stage cells. We conclude that extreme telomere length has no effects (positive or negative) on the fitness of yeast cells. IMPORTANCE Telomeres protect the chromosomal ends from fusion, degradation, and unwanted repair. Therefore, telomeres preserve genome stability and cell viability. In humans, telomeres shorten with each cell duplication event and with age. It has thus been proposed that telomere shortening may be responsible for human aging and that elongation of telomeres may be a way to rejuvenate cells and to combat aging. However, it is difficult to prove this hypothesis in human cells. Yeasts are easy to manipulate and have telomeres whose length is strictly maintained. Here we show that yeast cells manipulated to have extremely long telomeres (~5-fold those of normal cells) did not show any improvement or reduction in fitness compared to otherwise identical cells with telomeres of normal length under all the conditions tested. Moreover, an assay that measures cell aging showed no effect of the presence of extremely long telomeres. We thus conclude that extreme telomere length, at least in yeast cells, does not affect cellular fitness, aging, or senescence.

Original languageEnglish
Article numbere01314-17
JournalmBio
Volume8
Issue number4
DOIs
StatePublished - 1 Jul 2017

Keywords

  • Aging
  • Cancer
  • Ethanol
  • Fitness
  • Telomere
  • Yeasts

Fingerprint

Dive into the research topics of 'Long telomeres do not affect cellular fitness in yeast'. Together they form a unique fingerprint.

Cite this