TY - JOUR
T1 - Logarithmic asymptotics of the genus zero Gromov-Witten invariants of the blown up plane
AU - Itenberg, Ilia
AU - Kharlamov, Viatcheslav
AU - Shustin, Eugenii
PY - 2005/4/7
Y1 - 2005/4/7
N2 - We study the growth of the genus zero Gromov-Witten invariants GW nD of the projective plane Pk2 blown up at k points (where D is a class in the second homology group of Pk 2). We prove that, under some natural restrictions on D, the sequence log GWnD is equivalent to λn log n, where λ = D. c1(Pk2).
AB - We study the growth of the genus zero Gromov-Witten invariants GW nD of the projective plane Pk2 blown up at k points (where D is a class in the second homology group of Pk 2). We prove that, under some natural restrictions on D, the sequence log GWnD is equivalent to λn log n, where λ = D. c1(Pk2).
KW - Gromov-witten invariants
KW - Rational and ruled algebraic surfaces
KW - Rational and ruled symplectic 4-manifolds
KW - Tropical enumerative geometry
UR - http://www.scopus.com/inward/record.url?scp=21244443445&partnerID=8YFLogxK
U2 - 10.2140/gt.2005.9.483
DO - 10.2140/gt.2005.9.483
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:21244443445
SN - 1465-3060
VL - 9
SP - 483
EP - 491
JO - Geometry and Topology
JF - Geometry and Topology
ER -