Locally recoverable codes on algebraic curves

Alexander Barg, Itzhak Tamo, Serge Vladut

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

A code over a finite alphabet is called locally recoverable (LRC code) if every symbol in the encoding is a function of a small number (at most r) other symbols. A family of linear LRC codes that generalize the classic construction of Reed-Solomon codes was constructed in a recent paper by I. Tamo and A. Barg (IEEE Trans. Inform. Theory, vol. 60, no. 8, 2014, pp. 4661-4676). In this paper we extend this construction to codes on algebraic curves. We give a general construction of LRC codes on curves and compute some examples, including asymptotically good families of codes derived from the Garcia-Stichtenoth towers. The local recovery procedure is performed by polynomial interpolation over r coordinates of the codevector. We also obtain a family of Hermitian codes with two disjoint recovering sets for every symbol of the codeword.

Original languageEnglish
Title of host publicationProceedings - 2015 IEEE International Symposium on Information Theory, ISIT 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1252-1256
Number of pages5
ISBN (Electronic)9781467377041
DOIs
StatePublished - 28 Sep 2015
EventIEEE International Symposium on Information Theory, ISIT 2015 - Hong Kong, Hong Kong
Duration: 14 Jun 201519 Jun 2015

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2015-June
ISSN (Print)2157-8095

Conference

ConferenceIEEE International Symposium on Information Theory, ISIT 2015
Country/TerritoryHong Kong
CityHong Kong
Period14/06/1519/06/15

Funding

FundersFunder number
Directorate for Computer and Information Science and Engineering1217245, 1217894, 1422955
National Sleep FoundationCCFI217245, CCFI217894, CCFI422955

    Fingerprint

    Dive into the research topics of 'Locally recoverable codes on algebraic curves'. Together they form a unique fingerprint.

    Cite this