Localized Fisher vector representation for pathology detection in chest radiographs

Ofer Geva, Sivan Lieberman, Eli Konen, Hayit Greenspan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this work, we present a novel framework for automatic detection of abnormalities in chest radiographs. The representation model is based on the Fisher Vector encoding method. In the representation process, we encode each chest radiograph using a set of extracted local descriptors. These include localized texture features that address typical local texture abnormalities as well as spatial features. Using a Gaussian Mixture Model, a rich image descriptor is generated for each chest radiograph. An improved representation is obtained by selection of features that correspond to the relevant region of interest for each pathology. Categorization of the X-ray images is conducted using supervised learning and the SVM classifier. The proposed system was tested on a dataset of 636 chest radiographs taken from a real clinical environment. We measured the performance in terms of area (AUC) under the receiver operating characteristic (ROC) curve. Results show an AUC value of 0.878 for abnormal mediastinum detection, and AUC values of 0.827 and 0.817 for detection of right and left lung opacities, respectively. These results improve upon the state-of-the-art as compared with two alternative representation models.

Original languageEnglish
Title of host publicationMedical Imaging 2016
Subtitle of host publicationComputer-Aided Diagnosis
EditorsGeorgia D. Tourassi, Samuel G. Armato
PublisherSPIE
ISBN (Electronic)9781510600201
DOIs
StatePublished - 2016
EventMedical Imaging 2016: Computer-Aided Diagnosis - San Diego, United States
Duration: 28 Feb 20162 Mar 2016

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume9785
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2016: Computer-Aided Diagnosis
Country/TerritoryUnited States
CitySan Diego
Period28/02/162/03/16

Keywords

  • Chest radiography
  • Computer-aided detection (CAD)
  • Fisher vector
  • Image categorization
  • X-ray

Fingerprint

Dive into the research topics of 'Localized Fisher vector representation for pathology detection in chest radiographs'. Together they form a unique fingerprint.

Cite this