TY - GEN
T1 - List Update with Delays or Time Windows
AU - Azar, Yossi
AU - Lewkowicz, Shahar
AU - Vainstein, Danny
N1 - Publisher Copyright:
© Yossi Azar, Shahar Lewkowicz, and Danny Vainstein.
PY - 2024/7
Y1 - 2024/7
N2 - We address the problem of List Update, which is considered one of the fundamental problems in online algorithms and competitive analysis. In this context, we are presented with a list of elements and receive requests for these elements over time. Our objective is to fulfill these requests, incurring a cost proportional to their position in the list. Additionally, we can swap any two consecutive elements at a cost of 1. The renowned “Move to Front” algorithm, introduced by Sleator and Tarjan, immediately moves any requested element to the front of the list. They demonstrated that this algorithm achieves a competitive ratio of 2. While this bound is impressive, the actual cost of the algorithm’s solution can be excessively high. For example, if we request the last half of the list, the resulting solution cost becomes quadratic in the list’s length. To address this issue, we consider a more generalized problem called List Update with Time Windows. In this variant, each request arrives with a specific deadline by which it must be served, rather than being served immediately. Moreover, we allow the algorithm to process multiple requests simultaneously, accessing the corresponding elements in a single pass. The cost incurred in this case is determined by the position of the furthest element accessed, leading to a significant reduction in the total solution cost. We introduce this problem to explore lower solution costs, but it necessitates the development of new algorithms. For instance, Move-to-Front fails when handling the simple scenario of requesting the last half of the list with overlapping time windows. In our work, we present a natural O(1) competitive algorithm for this problem. While the algorithm itself is intuitive, its analysis is intricate, requiring the use of a novel potential function. Additionally, we delve into a more general problem called List Update with Delays, where the fixed deadlines are replaced with arbitrary delay functions. In this case, the cost includes not only the access and swapping costs, but also penalties for the delays incurred until the requests are served. This problem encompasses a special case known as the prize collecting version, where a request may go unserved up to a given deadline, resulting in a specified penalty. For this more comprehensive problem, we establish an O(1) competitive algorithm. However, the algorithm for the delay version is more complex, and its analysis involves significantly more intricate considerations.
AB - We address the problem of List Update, which is considered one of the fundamental problems in online algorithms and competitive analysis. In this context, we are presented with a list of elements and receive requests for these elements over time. Our objective is to fulfill these requests, incurring a cost proportional to their position in the list. Additionally, we can swap any two consecutive elements at a cost of 1. The renowned “Move to Front” algorithm, introduced by Sleator and Tarjan, immediately moves any requested element to the front of the list. They demonstrated that this algorithm achieves a competitive ratio of 2. While this bound is impressive, the actual cost of the algorithm’s solution can be excessively high. For example, if we request the last half of the list, the resulting solution cost becomes quadratic in the list’s length. To address this issue, we consider a more generalized problem called List Update with Time Windows. In this variant, each request arrives with a specific deadline by which it must be served, rather than being served immediately. Moreover, we allow the algorithm to process multiple requests simultaneously, accessing the corresponding elements in a single pass. The cost incurred in this case is determined by the position of the furthest element accessed, leading to a significant reduction in the total solution cost. We introduce this problem to explore lower solution costs, but it necessitates the development of new algorithms. For instance, Move-to-Front fails when handling the simple scenario of requesting the last half of the list with overlapping time windows. In our work, we present a natural O(1) competitive algorithm for this problem. While the algorithm itself is intuitive, its analysis is intricate, requiring the use of a novel potential function. Additionally, we delve into a more general problem called List Update with Delays, where the fixed deadlines are replaced with arbitrary delay functions. In this case, the cost includes not only the access and swapping costs, but also penalties for the delays incurred until the requests are served. This problem encompasses a special case known as the prize collecting version, where a request may go unserved up to a given deadline, resulting in a specified penalty. For this more comprehensive problem, we establish an O(1) competitive algorithm. However, the algorithm for the delay version is more complex, and its analysis involves significantly more intricate considerations.
KW - Deadline
KW - Delay
KW - List Update
KW - Online
KW - Time Window
UR - http://www.scopus.com/inward/record.url?scp=85198381759&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ICALP.2024.15
DO - 10.4230/LIPIcs.ICALP.2024.15
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85198381759
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 51st International Colloquium on Automata, Languages, and Programming, ICALP 2024
A2 - Bringmann, Karl
A2 - Grohe, Martin
A2 - Puppis, Gabriele
A2 - Svensson, Ola
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 51st International Colloquium on Automata, Languages, and Programming, ICALP 2024
Y2 - 8 July 2024 through 12 July 2024
ER -