Linking image and text with 2-way nets

Aviv Eisenschtat, Lior Wolf

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Linking two data sources is a basic building block in numerous computer vision problems. Canonical Correlation Analysis (CCA) achieves this by utilizing a linear optimizer in order to maximize the correlation between the two views. Recent work makes use of non-linear models, including deep learning techniques, that optimize the CCA loss in some feature space. In this paper, we introduce a novel, bi-directional neural network architecture for the task of matching vectors from two data sources. Our approach employs two tied neural network channels that project the two views into a common, maximally correlated space using the Euclidean loss. We show a direct link between the correlation-based loss and Euclidean loss, enabling the use of Euclidean loss for correlation maximization. To overcome common Euclidean regression optimization problems, we modify well-known techniques to our problem, including batch normalization and dropout. We show state of the art results on a number of computer vision matching tasks including MNIST image matching and sentence-image matching on the Flickr8k, Flickr30k and COCO datasets.

Original languageEnglish
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1855-1865
Number of pages11
ISBN (Electronic)9781538604571
DOIs
StatePublished - 6 Nov 2017
Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
Duration: 21 Jul 201726 Jul 2017

Publication series

NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Volume2017-January

Conference

Conference30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Country/TerritoryUnited States
CityHonolulu
Period21/07/1726/07/17

Fingerprint

Dive into the research topics of 'Linking image and text with 2-way nets'. Together they form a unique fingerprint.

Cite this