TY - JOUR
T1 - Linear programming bounds for codes of small size
AU - Krasikov, Ilia
AU - Litsyn, Simon
PY - 1997/8
Y1 - 1997/8
N2 - Combining linear programming with the Plotkin-Johnson argument for constant weight codes, we derive upper bounds on the size of codes of length n and minimum distance d = (n - j)/2, 01/3. For j = o(n1/3) these bounds practically coincide with (are slightly better than) the Tietäväinen bound. For j fixed and for j proportional to n1/3, j1/3 - (2/9)1nn, it improves on the earlier known results.
AB - Combining linear programming with the Plotkin-Johnson argument for constant weight codes, we derive upper bounds on the size of codes of length n and minimum distance d = (n - j)/2, 01/3. For j = o(n1/3) these bounds practically coincide with (are slightly better than) the Tietäväinen bound. For j fixed and for j proportional to n1/3, j1/3 - (2/9)1nn, it improves on the earlier known results.
UR - http://www.scopus.com/inward/record.url?scp=30244537928&partnerID=8YFLogxK
U2 - 10.1006/eujc.1996.0129
DO - 10.1006/eujc.1996.0129
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:30244537928
VL - 18
SP - 647
EP - 656
JO - European Journal of Combinatorics
JF - European Journal of Combinatorics
SN - 0195-6698
IS - 6
ER -