TY - JOUR
T1 - Limitations and Pitfalls of Substrate Mapping for Ventricular Tachycardia
AU - Anter, Elad
N1 - Publisher Copyright:
© 2021
PY - 2021/4
Y1 - 2021/4
N2 - The fundamental hypothesis of substrate mapping for scar-mediated ventricular tachycardia is that surrogates of the isthmus can be identified and targeted with ablation during sinus rhythm. These surrogates include electrocardiographic indications for electric discontinuity such as fractionation, split, late, and long potentials, also evident as sites displaying activation slowing. However, ablation strategies targeting these surrogates during sinus rhythm have resulted in unacceptably high rates of clinical failures, promoting the idea that a more widespread ablation may be required. High-resolution mapping technologies provide an opportunity to examine the substrate at greater detail; however, their use has not yet translated into improved clinical outcomes. This may be related to ongoing efforts to examine the same surrogates at higher resolution instead of using high-resolution technologies for discovering new and potentially more specific surrogates. This article reviews common limitations and pitfalls of substrate mapping and discusses new opportunities for high-resolution mapping to increase the accuracy of substrate mapping: 1) multielectrode mapping catheters provide an opportunity to rapidly examine the substrate during electrophysiological conditions that more closely simulate ventricular tachycardia by means of activation from different directions and coupling intervals; 2) electrogram annotation methods based on the maximal negative derivative of the extracellular potential or maximal voltage are often inaccurate in nonuniform anisotropic tissue. The use of multielectrode catheters may improve the accuracy of electrogram annotation by using spatiotemporal dispersion of single-beat acquisitions and a localized indifferent reference; and 3) resetting and entrainment remain important methods for studying re-entry for and guiding ablation.
AB - The fundamental hypothesis of substrate mapping for scar-mediated ventricular tachycardia is that surrogates of the isthmus can be identified and targeted with ablation during sinus rhythm. These surrogates include electrocardiographic indications for electric discontinuity such as fractionation, split, late, and long potentials, also evident as sites displaying activation slowing. However, ablation strategies targeting these surrogates during sinus rhythm have resulted in unacceptably high rates of clinical failures, promoting the idea that a more widespread ablation may be required. High-resolution mapping technologies provide an opportunity to examine the substrate at greater detail; however, their use has not yet translated into improved clinical outcomes. This may be related to ongoing efforts to examine the same surrogates at higher resolution instead of using high-resolution technologies for discovering new and potentially more specific surrogates. This article reviews common limitations and pitfalls of substrate mapping and discusses new opportunities for high-resolution mapping to increase the accuracy of substrate mapping: 1) multielectrode mapping catheters provide an opportunity to rapidly examine the substrate during electrophysiological conditions that more closely simulate ventricular tachycardia by means of activation from different directions and coupling intervals; 2) electrogram annotation methods based on the maximal negative derivative of the extracellular potential or maximal voltage are often inaccurate in nonuniform anisotropic tissue. The use of multielectrode catheters may improve the accuracy of electrogram annotation by using spatiotemporal dispersion of single-beat acquisitions and a localized indifferent reference; and 3) resetting and entrainment remain important methods for studying re-entry for and guiding ablation.
KW - ablation
KW - electrophysiology
KW - re-entry
KW - substrate mapping
KW - ventricular tachycardia
UR - http://www.scopus.com/inward/record.url?scp=85104083754&partnerID=8YFLogxK
U2 - 10.1016/j.jacep.2021.02.007
DO - 10.1016/j.jacep.2021.02.007
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
C2 - 33888275
AN - SCOPUS:85104083754
SN - 2405-500X
VL - 7
SP - 542
EP - 560
JO - JACC: Clinical Electrophysiology
JF - JACC: Clinical Electrophysiology
IS - 4
ER -