TY - JOUR
T1 - Light environment drives the shallow-to-mesophotic coral community transition
AU - Tamir, Raz
AU - Eyal, Gal
AU - Kramer, Netanel
AU - Laverick, Jack H.
AU - Loya, Yossi
N1 - Publisher Copyright:
© 2019 The Authors.
PY - 2019/9/1
Y1 - 2019/9/1
N2 - Light quality is a crucial physical factor driving coral distribution along depth gradients. Currently, a 30 m depth limit, based on SCUBA regulations, separates shallow and deep mesophotic coral ecosystems (MCEs). This definition, however, fails to explicitly accommodate environmental variation. Here, we posit a novel definition for a regional or reef-to-reef outlook of MCEs based on the light vs. coral community–structure relationship. A combination of physical and ecological methods enabled us to clarify the ambiguity in relation to the mesophotic definition. To characterize coral community structure with respect to the light environment, we conducted wide-scale spatial studies at five sites along shallow and MCEs of the Gulf of Eilat/Aqaba (0–100 m depth). Surveys were conducted by technical-diving and drop-cameras, in addition to one year of light spectral measurements. We quantify two distinct coral assemblages: shallow (<40 m) and MCEs (40–100 m), exhibiting markedly different relationships with light. The depth ranges and morphology of 47 coral genera were better explained by light than depth, mainly, due to photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) (1% at 76 and 36 m, respectively). Branching coral species were found mainly at shallower depths, that is, down to 36 m. Among the abundant upper-mesophotic specialist corals, Leptoseris glabra, Euphyllia paradivisa, and Alveopora spp. were found strictly between 40 and 80 m depth. The only lower-mesophotic specialist, Leptoseris fragilis, was found deeper than 80 m. We suggest that shallow coral genera are light-limited below a level of 1.25% surface PAR and that the optimal PAR for mesophotic communities is at 7.5%. This study contributes to moving MCE ecology from a descriptive phase into identifying key ecological and physiological processes structuring MCE coral communities. Moreover, it may serve as a model enabling the description of a coral zonation worldwide on the basis of light quality data.
AB - Light quality is a crucial physical factor driving coral distribution along depth gradients. Currently, a 30 m depth limit, based on SCUBA regulations, separates shallow and deep mesophotic coral ecosystems (MCEs). This definition, however, fails to explicitly accommodate environmental variation. Here, we posit a novel definition for a regional or reef-to-reef outlook of MCEs based on the light vs. coral community–structure relationship. A combination of physical and ecological methods enabled us to clarify the ambiguity in relation to the mesophotic definition. To characterize coral community structure with respect to the light environment, we conducted wide-scale spatial studies at five sites along shallow and MCEs of the Gulf of Eilat/Aqaba (0–100 m depth). Surveys were conducted by technical-diving and drop-cameras, in addition to one year of light spectral measurements. We quantify two distinct coral assemblages: shallow (<40 m) and MCEs (40–100 m), exhibiting markedly different relationships with light. The depth ranges and morphology of 47 coral genera were better explained by light than depth, mainly, due to photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) (1% at 76 and 36 m, respectively). Branching coral species were found mainly at shallower depths, that is, down to 36 m. Among the abundant upper-mesophotic specialist corals, Leptoseris glabra, Euphyllia paradivisa, and Alveopora spp. were found strictly between 40 and 80 m depth. The only lower-mesophotic specialist, Leptoseris fragilis, was found deeper than 80 m. We suggest that shallow coral genera are light-limited below a level of 1.25% surface PAR and that the optimal PAR for mesophotic communities is at 7.5%. This study contributes to moving MCE ecology from a descriptive phase into identifying key ecological and physiological processes structuring MCE coral communities. Moreover, it may serve as a model enabling the description of a coral zonation worldwide on the basis of light quality data.
KW - Gulf of Eilat/Aqaba
KW - Red Sea
KW - coral community structure
KW - corals
KW - deep coral reefs
KW - light
KW - mesophotic coral ecosystems
KW - photosynthetically active radiation
KW - specialist vs. generalist species
KW - twilight zone
KW - zonation
UR - http://www.scopus.com/inward/record.url?scp=85073244043&partnerID=8YFLogxK
U2 - 10.1002/ecs2.2839
DO - 10.1002/ecs2.2839
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85073244043
SN - 2150-8925
VL - 10
JO - Ecosphere
JF - Ecosphere
IS - 9
M1 - e02839
ER -