Leveraging the HapMap correlation structure in association studies

Noah Zaitlen, Hyun Min Kang, Eleazar Eskin, Eran Halperin

Research output: Contribution to journalArticlepeer-review

Abstract

Recent high-throughput genotyping technologies, such as the Affymetrix 500k array and the Illumina HumanHap 550 beadchip, have driven down the costs of association studies and have enabled the measurement of single-nucleotide polymorphism (SNP) allele frequency differences between case and control populations on a genomewide scale. A key aspect in the efficiency of association studies is the notion of "indirect association," where only a subset of SNPs are collected to serve as proxies for the uncollected SNPs, taking advantage of the correlation structure between SNPs. Recently, a new class of methods for indirect association, multimarker methods, has been proposed. Although the multimarker methods are a considerable advancement, current methods do not fully take advantage of the correlation structure between SNPs and their multimarker proxies. In this article, we propose a novel multimarker indirect-association method, WHAP, that is based on a weighted sum of the haplotype frequency differences. In contrast to traditional indirect-association methods, we show analytically that there is a considerable gain in power achieved by our method compared with both single-marker and multimarker tests, as well as traditional haplotype-based tests. Our results are supported by empirical evaluation across the HapMap reference panel data sets, and a software implementation for the Affymetrix 500k and Illumina HumanHap 550 chips is available for download.

Original languageEnglish
Pages (from-to)683-691
Number of pages9
JournalAmerican Journal of Human Genetics
Volume80
Issue number4
DOIs
StatePublished - Apr 2007
Externally publishedYes

Fingerprint

Dive into the research topics of 'Leveraging the HapMap correlation structure in association studies'. Together they form a unique fingerprint.

Cite this