Lectin histochemistry of mammalian Brunner's glands

E. Skutelsky, R. P. Moore, J. Alroy*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Lectin histochemical study was performed on twenty-eight specimens of formalin-fixed paraffin embedded tissues of proximal duodenum from human, cat, dog and Rhesus (macaque) monkey to demonstrate the pattern of carbohydrate residues in submucosal glands of Brunner as compared to that of the duodenal absorptive and goblet cells. Ten different biotinylated lectins were used as probes, and avidin-biotin-peroxidase (ABC) or avidin-gold-silver (AGS) complexes were used as "visualants". Brunner's gland cells of the four species studied exhibited a similar lectin-binding pattern which differ from other duodenal cells. The epithelium of Brunner's gland stained intensely with Ricinus communis agglutinin-I (RCA-I), succinylated-WGA (S-WGA) and wheat-germ agglutinin (WGA), moderately with Bandeirea simplicifolia agglutinin-I (BS-I), Concanavalia ensiformis agglutinin (Con A) peanut agglutinin (PNA) and Ulex europaeus agglutinin-I (UEA-I) and occasionally with Dolichos biflorus agglutinin (DBA), Lens culinaris agglutinin (LCA) and soybean agglutinin (SBA). Desialylation with neuraminidase resulted in only a slight elevation in binding intensities of PNA, DBA and SBA, indicating that glycoconjugates of the Brunner's gland cells are rich in asialo-oligosaccharides, which differs from duodenal epithelial cells. In addition, these histochemical reagents were useful in localizing Brunner's gland elements in the duodenal mucosa.

Original languageEnglish
Pages (from-to)383-390
Number of pages8
Issue number5
StatePublished - Sep 1989


Dive into the research topics of 'Lectin histochemistry of mammalian Brunner's glands'. Together they form a unique fingerprint.

Cite this