Learning with attribute costs

Haim Kaplan, Eyal Kusnilevitz, Yishay Mansour

Research output: Contribution to journalConference articlepeer-review

Abstract

We study an extension of the "standard" learning models to settings where observing the value of an attribute has an associated cost (which might be different for different attributes). Our model assumes that the correct classification is given by some target function f from a class of functions ℱ most of our results discuss the ability to learn a clause (an OR function of a subset of the variables) in various settings: Offline: We are given both the function f and the distribution D that is used to generate an input x. The goal is to design a strategy to decide what attribute of x to observe next so as to minimize the expected evaluation cost of f(x). (In this setting there is no "learning" to be done but only an optimization problem to be solved; this problem is to be NP-hard and hence approximation algorithms are presented.) Distributional online: We study two types of "learning" problems; one where the target function f is known to the learner but the distribution D is unknown (and the goal is to minimize the expected cost including the cost that stems from "learning" D), and the other where f is unknown (except that f ∈ ℱ) but D is known (and the goal is to minimize the expected cost while limiting the prediction error involved in "learning" f). Adversarial online: We are given f, however the inputs are selected adversarially. The goal is to compare the learner's cost to that of the best fixed evaluation order (i.e., we analyze the learner's performance by a competitive analysis).

Original languageEnglish
Pages (from-to)356-365
Number of pages10
JournalProceedings of the Annual ACM Symposium on Theory of Computing
DOIs
StatePublished - 2005
Event13th Color Imaging Conference: Color Science, Systems, Technologies, and Applications - Scottsdale, AZ, United States
Duration: 7 Nov 200511 Nov 2005

Keywords

  • Approximation Algorithms
  • Learning
  • Online

Fingerprint

Dive into the research topics of 'Learning with attribute costs'. Together they form a unique fingerprint.

Cite this