Learning to segment via cut-and-paste

Tal Remez*, Jonathan Huang, Matthew Brown

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper presents a weakly-supervised approach to object instance segmentation. Starting with known or predicted object bounding boxes, we learn object masks by playing a game of cut-and-paste in an adversarial learning setup. A mask generator takes a detection box and Faster R-CNN features, and constructs a segmentation mask that is used to cut-and-paste the object into a new image location. The discriminator tries to distinguish between real objects, and those cut and pasted via the generator, giving a learning signal that leads to improved object masks. We verify our method experimentally using Cityscapes, COCO, and aerial image datasets, learning to segment objects without ever having seen a mask in training. Our method exceeds the performance of existing weakly supervised methods, without requiring hand-tuned segment proposals, and reaches 90% of supervised performance.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2018 - 15th European Conference, 2018, Proceedings
EditorsVittorio Ferrari, Cristian Sminchisescu, Martial Hebert, Yair Weiss
PublisherSpringer Verlag
Pages39-54
Number of pages16
ISBN (Print)9783030012335
DOIs
StatePublished - 2018
Externally publishedYes
Event15th European Conference on Computer Vision, ECCV 2018 - Munich, Germany
Duration: 8 Sep 201814 Sep 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11211 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference15th European Conference on Computer Vision, ECCV 2018
Country/TerritoryGermany
CityMunich
Period8/09/1814/09/18

Keywords

  • Deep-learning
  • Instance segmentation
  • Weakly-supervised

Fingerprint

Dive into the research topics of 'Learning to segment via cut-and-paste'. Together they form a unique fingerprint.

Cite this