TY - GEN
T1 - Learning to Correct Sloppy Annotations in Electron Microscopy Volumes
AU - Chen, Minghao
AU - Renuka, Mukesh Bangalore
AU - Mi, Lu
AU - Lichtman, Jeff
AU - Shavit, Nir
AU - Meirovitch, Yaron
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Connectomics deals with the problem of reconstructing neural circuitry from electron microscopy images at the synaptic level. Automatically reconstructing circuits from these volumes requires high fidelity 3-D instance segmentation, which yet appears to be a daunting task for current computer vision algorithms. Hence, to date, most datasets are not reconstructed by fully-automated methods. Even after painstaking proofreading, these methods still produce numerous small errors. In this paper, we propose an approach to accelerate manual reconstructions by learning to correct imperfect manual annotations. To achieve this, we designed a novel solution for the canonical problem of marker-based 2-D instance segmentation, reporting a new state-of-the-art for region-growing algorithms demonstrated on challenging electron microscopy image stacks. We use our marker-based instance segmentation algorithm to learn to correct all "sloppy"object annotations by reducing and expanding all annotations. Our correction algorithm results in high quality morphological reconstruction (near ground truth quality), while significantly cutting annotation time (~8x) for several examples in connectomics. We demonstrate the accuracy of our approach on public connectomics benchmarks and on a set of large-scale neuron reconstruction problems, including on a new octopus dataset that cannot be automatically segmented at scale by existing algorithms.
AB - Connectomics deals with the problem of reconstructing neural circuitry from electron microscopy images at the synaptic level. Automatically reconstructing circuits from these volumes requires high fidelity 3-D instance segmentation, which yet appears to be a daunting task for current computer vision algorithms. Hence, to date, most datasets are not reconstructed by fully-automated methods. Even after painstaking proofreading, these methods still produce numerous small errors. In this paper, we propose an approach to accelerate manual reconstructions by learning to correct imperfect manual annotations. To achieve this, we designed a novel solution for the canonical problem of marker-based 2-D instance segmentation, reporting a new state-of-the-art for region-growing algorithms demonstrated on challenging electron microscopy image stacks. We use our marker-based instance segmentation algorithm to learn to correct all "sloppy"object annotations by reducing and expanding all annotations. Our correction algorithm results in high quality morphological reconstruction (near ground truth quality), while significantly cutting annotation time (~8x) for several examples in connectomics. We demonstrate the accuracy of our approach on public connectomics benchmarks and on a set of large-scale neuron reconstruction problems, including on a new octopus dataset that cannot be automatically segmented at scale by existing algorithms.
UR - http://www.scopus.com/inward/record.url?scp=85170821067&partnerID=8YFLogxK
U2 - 10.1109/CVPRW59228.2023.00450
DO - 10.1109/CVPRW59228.2023.00450
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85170821067
T3 - IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
SP - 4273
EP - 4284
BT - Proceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
PB - IEEE Computer Society
T2 - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
Y2 - 18 June 2023 through 22 June 2023
ER -