Learning Linear Block Error Correction Codes

Yoni Choukroun*, Lior Wolf*

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

Abstract

Error correction codes are a crucial part of the physical communication layer, ensuring the reliable transfer of data over noisy channels. The design of optimal linear block codes capable of being efficiently decoded is of major concern, especially for short block lengths. While neural decoders have recently demonstrated their advantage over classical decoding techniques, the neural design of the codes remains a challenge. In this work, we propose for the first time a unified encoder-decoder training of binary linear block codes. To this end, we adapt the coding setting to support efficient and differentiable training of the code for end-to-end optimization over the order two Galois field. We also propose a novel Transformer model in which the self-attention masking is performed in a differentiable fashion for the efficient backpropagation of the code gradient. Our results show that (i) the proposed decoder outperforms existing neural decoding on conventional codes, (ii) the suggested framework generates codes that outperform the analogous conventional codes, and (iii) the codes we developed not only excel with our decoder but also show enhanced performance with traditional decoding techniques.

Original languageEnglish
Pages (from-to)8801-8814
Number of pages14
JournalProceedings of Machine Learning Research
Volume235
StatePublished - 2024
Event41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria
Duration: 21 Jul 202427 Jul 2024

Funding

FundersFunder number
Tel Aviv University
Blavatnik Computer Science Research Fund

    Fingerprint

    Dive into the research topics of 'Learning Linear Block Error Correction Codes'. Together they form a unique fingerprint.

    Cite this