TY - GEN
T1 - Learning detailed face reconstruction from a single image
AU - Richardson, Elad
AU - Sela, Matan
AU - Or-El, Roy
AU - Kimmel, Ron
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/11/6
Y1 - 2017/11/6
N2 - Reconstructing the detailed geometric structure of a face from a given image is a key to many computer vision and graphics applications, such as motion capture and reenactment. The reconstruction task is challenging as human faces vary extensively when considering expressions, poses, textures, and intrinsic geometries. While many approaches tackle this complexity by using additional data to reconstruct the face of a single subject, extracting facial surface from a single image remains a difficult problem. As a result, single-image based methods can usually provide only a rough estimate of the facial geometry. In contrast, we propose to leverage the power of convolutional neural networks to produce a highly detailed face reconstruction from a single image. For this purpose, we introduce an end-to-end CNN framework which derives the shape in a coarse-to-fine fashion. The proposed architecture is composed of two main blocks, a network that recovers the coarse facial geometry (CoarseNet), followed by a CNN that refines the facial features of that geometry (FineNet). The proposed networks are connected by a novel layer which renders a depth image given a mesh in 3D. Unlike object recognition and detection problems, there are no suitable datasets for training CNNs to perform face geometry reconstruction. Therefore, our training regime begins with a supervised phase, based on synthetic images, followed by an unsupervised phase that uses only unconstrained facial images. The accuracy and robustness of the proposed model is demonstrated by both qualitative and quantitative evaluation tests.
AB - Reconstructing the detailed geometric structure of a face from a given image is a key to many computer vision and graphics applications, such as motion capture and reenactment. The reconstruction task is challenging as human faces vary extensively when considering expressions, poses, textures, and intrinsic geometries. While many approaches tackle this complexity by using additional data to reconstruct the face of a single subject, extracting facial surface from a single image remains a difficult problem. As a result, single-image based methods can usually provide only a rough estimate of the facial geometry. In contrast, we propose to leverage the power of convolutional neural networks to produce a highly detailed face reconstruction from a single image. For this purpose, we introduce an end-to-end CNN framework which derives the shape in a coarse-to-fine fashion. The proposed architecture is composed of two main blocks, a network that recovers the coarse facial geometry (CoarseNet), followed by a CNN that refines the facial features of that geometry (FineNet). The proposed networks are connected by a novel layer which renders a depth image given a mesh in 3D. Unlike object recognition and detection problems, there are no suitable datasets for training CNNs to perform face geometry reconstruction. Therefore, our training regime begins with a supervised phase, based on synthetic images, followed by an unsupervised phase that uses only unconstrained facial images. The accuracy and robustness of the proposed model is demonstrated by both qualitative and quantitative evaluation tests.
UR - http://www.scopus.com/inward/record.url?scp=85041905757&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2017.589
DO - 10.1109/CVPR.2017.589
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85041905757
T3 - Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
SP - 5553
EP - 5562
BT - Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Y2 - 21 July 2017 through 26 July 2017
ER -