Learn stereo, infer mono: Siamese networks for self-supervised, monocular, depth estimation

Matan Goldman, Tal Hassner, Shai Avidan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

35 Scopus citations

Abstract

The field of self-supervised monocular depth estimation has seen huge advancements in recent years. Most methods assume stereo data is available during training but usually under-utilize it and only treat it as a reference signal. We propose a novel self-supervised approach which uses both left and right images equally during training, but can still be used with a single input image at test time, for monocular depth estimation. Our Siamese network architecture consists of two, twin networks, each learns to predict a disparity map from a single image. At test time, however, only one of these networks is used in order to infer depth. We show state-of-the-art results on the standard KITTI Eigen split benchmark as well as being the highest scoring self-supervised method on the new KITTI single view benchmark. To demonstrate the ability of our method to generalize to new data sets, we further provide results on the Make3D benchmark, which was not used during training.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019
PublisherIEEE Computer Society
Pages2886-2895
Number of pages10
ISBN (Electronic)9781728125060
DOIs
StatePublished - Jun 2019
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019 - Long Beach, United States
Duration: 16 Jun 201920 Jun 2019

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volume2019-June
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019
Country/TerritoryUnited States
CityLong Beach
Period16/06/1920/06/19

Fingerprint

Dive into the research topics of 'Learn stereo, infer mono: Siamese networks for self-supervised, monocular, depth estimation'. Together they form a unique fingerprint.

Cite this