TY - JOUR
T1 - LC-MS analysis of polyclonal human anti-Neu5Gc xeno-autoantibodies immunoglobulin G subclass and partial sequence using multistep intravenous immunoglobulin affinity purification and multienzymatic digestion
AU - Lu, Qiaozhen
AU - Padler-Karavani, Vered
AU - Yu, Hai
AU - Chen, Xi
AU - Wu, Shiaw Lin
AU - Varki, Ajit
AU - Hancock, William S.
PY - 2012/3/20
Y1 - 2012/3/20
N2 - Human polyclonal IgG antibodies directly against the nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc) are potential biomarkers and mechanistic contributors to cancer and other diseases associated with chronic inflammation. Using a sialoglycan microarray, we screened the binding pattern of such antibodies (anti-Neu5Gc IgG) in several samples of clinically approved human IVIG (IgG). These results were used to select an appropriate sample for a multistep affinity purification of the xeno-autoantibody fraction. The sample was then analyzed via our multienzyme digestion procedure followed by nano liquid chromatography (nanoLC) coupled to linear ion trap-Fourier transform mass spectrometry (LTQ-FTMS). We used characteristic and unique peptide sequences to determine the IgG subclass distribution and thus provided direct evidence that all four IgG subclasses can be generated during a xeno-autoantibody immune response to carbohydrate Neu5Gc-antigens. Furthermore, we obtained a significant amount of sequence coverage of both the constant and variable regions. The approach described here, therefore, provides a way to characterize these clinically significant antibodies, helping to understand their origins and significance.
AB - Human polyclonal IgG antibodies directly against the nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc) are potential biomarkers and mechanistic contributors to cancer and other diseases associated with chronic inflammation. Using a sialoglycan microarray, we screened the binding pattern of such antibodies (anti-Neu5Gc IgG) in several samples of clinically approved human IVIG (IgG). These results were used to select an appropriate sample for a multistep affinity purification of the xeno-autoantibody fraction. The sample was then analyzed via our multienzyme digestion procedure followed by nano liquid chromatography (nanoLC) coupled to linear ion trap-Fourier transform mass spectrometry (LTQ-FTMS). We used characteristic and unique peptide sequences to determine the IgG subclass distribution and thus provided direct evidence that all four IgG subclasses can be generated during a xeno-autoantibody immune response to carbohydrate Neu5Gc-antigens. Furthermore, we obtained a significant amount of sequence coverage of both the constant and variable regions. The approach described here, therefore, provides a way to characterize these clinically significant antibodies, helping to understand their origins and significance.
UR - http://www.scopus.com/inward/record.url?scp=84863344855&partnerID=8YFLogxK
U2 - 10.1021/ac2030893
DO - 10.1021/ac2030893
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84863344855
SN - 0003-2700
VL - 84
SP - 2761
EP - 2768
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 6
ER -