TY - JOUR
T1 - Lattice variation of cubic Y2O3 in three dimensions
T2 - Temperature, pressure and crystal size
AU - Barad, Chen
AU - Kimmel, Giora
AU - Rosen, Brian A.
AU - Sahartov, Alla
AU - Hayun, Hagay
AU - Zabicky, Jacob
AU - Gelbstein, Yaniv
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/12/10
Y1 - 2021/12/10
N2 - Yttrium oxide (Y2O3) is a ceramic material in use in various fields such as catalysis, thermal barrier coatings, dental ceramics, solid-state lasers, solid oxide fuel cells and etc. In nanoscale metal oxides, unlike metals, the dependence of the lattice parameter on the crystal size is in dispute. Y2O3 and 5 vol% Y2O3 in MgO powders were synthesized via the sol-gel technique. The latter was made in order to produce Y2O3 inclusions in MgO, allowing for the study of differences resulting from crystal size with inhibited thermal growth. However, the lattice parameters of the C-type Y2O3 were significantly lower than expected due to misfit high compression stress. High-temperature X-ray diffraction (HT-XRD) was used in order to investigate in situ crystal structure and microstructure variations of Y2O3 imbedded in MgO as formed at high temperatures free of misfit strain, comparing with in situ study of pure Y2O3 formation at the same temperature range. It was found that nanocrystalline C-type Y2O3 was formed at a temperature range of 873–1163 K. Lattice parameters and crystal size were evaluated by using Rietveld refinement and high resolution scanning electron microscopy (HR-SEM). The relative lattice parameter changes as a function of crystal size were obtained by analyzing the in situ HT-XRD data from 873 to 1573 K. Those results along with those obtained at room temperature showed a non-monotonic trend: lattice contraction versus decreasing crystal size at the range of 60–45 nm crystal size and lattice expansion versus decreasing crystal size for smaller crystals (approximately 0.11%). The non-monotonic lattice variation was modeled by assuming two effects acting simultaneously as a function of crystal size: lattice contraction due to hydrostatic pressure caused by the surface tension and Madelung model predicting lattice expansion due to weakening of bonding force in small ionic crystals. The calculated theoretical lattice parameters values which were obtained by using this model were compared to the experimental results yielding a better understanding of the lattice variations in nano-Y2O3.
AB - Yttrium oxide (Y2O3) is a ceramic material in use in various fields such as catalysis, thermal barrier coatings, dental ceramics, solid-state lasers, solid oxide fuel cells and etc. In nanoscale metal oxides, unlike metals, the dependence of the lattice parameter on the crystal size is in dispute. Y2O3 and 5 vol% Y2O3 in MgO powders were synthesized via the sol-gel technique. The latter was made in order to produce Y2O3 inclusions in MgO, allowing for the study of differences resulting from crystal size with inhibited thermal growth. However, the lattice parameters of the C-type Y2O3 were significantly lower than expected due to misfit high compression stress. High-temperature X-ray diffraction (HT-XRD) was used in order to investigate in situ crystal structure and microstructure variations of Y2O3 imbedded in MgO as formed at high temperatures free of misfit strain, comparing with in situ study of pure Y2O3 formation at the same temperature range. It was found that nanocrystalline C-type Y2O3 was formed at a temperature range of 873–1163 K. Lattice parameters and crystal size were evaluated by using Rietveld refinement and high resolution scanning electron microscopy (HR-SEM). The relative lattice parameter changes as a function of crystal size were obtained by analyzing the in situ HT-XRD data from 873 to 1573 K. Those results along with those obtained at room temperature showed a non-monotonic trend: lattice contraction versus decreasing crystal size at the range of 60–45 nm crystal size and lattice expansion versus decreasing crystal size for smaller crystals (approximately 0.11%). The non-monotonic lattice variation was modeled by assuming two effects acting simultaneously as a function of crystal size: lattice contraction due to hydrostatic pressure caused by the surface tension and Madelung model predicting lattice expansion due to weakening of bonding force in small ionic crystals. The calculated theoretical lattice parameters values which were obtained by using this model were compared to the experimental results yielding a better understanding of the lattice variations in nano-Y2O3.
KW - Ceramics
KW - Crystal structure
KW - High Resolution Scaning Electrom Microscopy (HR-SEM)
KW - Sol-gel processes
KW - X-ray powder diffraction
UR - http://www.scopus.com/inward/record.url?scp=85110663730&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2021.161199
DO - 10.1016/j.jallcom.2021.161199
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85110663730
SN - 0925-8388
VL - 885
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
M1 - 161199
ER -