TY - JOUR
T1 - Lateral cephalometric parameters among Arab skeletal classes II and III patients and applying machine learning models
AU - Midlej, Kareem
AU - Watted, Nezar
AU - Awadi, Obaida
AU - Masarwa, Samir
AU - Lone, Iqbal M.
AU - Zohud, Osayd
AU - Paddenberg, Eva
AU - Krohn, Sebastian
AU - Kuchler, Erika
AU - Proff, Peter
AU - Iraqi, Fuad A.
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/9
Y1 - 2024/9
N2 - Background: The World Health Organization considers malocclusion one of the most essential oral health problems. This disease influences various aspects of patients’ health and well-being. Therefore, making it easier and more accurate to understand and diagnose patients with skeletal malocclusions is necessary. Objectives: The main aim of this research was the establishment of machine learning models to correctly classify individual Arab patients, being citizens of Israel, as skeletal class II or III. Secondary outcomes of the study included comparing cephalometric parameters between patients with skeletal class II and III and between age and gender-specific subgroups, an analysis of the correlation of various cephalometric variables, and principal component analysis in skeletal class diagnosis. Methods: This quantitative, observational study is based on data from the Orthodontic Center, Jatt, Israel. The experimental data consisted of the coded records of 502 Arab patients diagnosed as Class II or III according to the Calculated_ANB. This parameter was defined as the difference between the measured ANB angle and the individualized ANB of Panagiotidis and Witt. In this observational study, we focused on the primary aim, i.e., the establishment of machine learning models for the correct classification of skeletal class II and III in a group of Arab orthodontic patients. For this purpose, various ML models and input data was tested after identifying the most relevant parameters by conducting a principal component analysis. As secondary outcomes this study compared the cephalometric parameters and analyzed their correlations between skeletal class II and III as well as between gender and age specific subgroups. Results: Comparison of the two groups demonstrated significant differences between skeletal class II and class III patients. This was shown for the parameters NL-NSL angle, PFH/AFH ratio, SNA angle, SNB angle, SN-Ba angle. SN-Pg angle, and ML-NSL angle in skeletal class III patients, and for S-N (mm) in skeletal class II patients. In skeletal class II and skeletal class III patients, the results showed that the Calculated_ANB correlated well with many other cephalometric parameters. With the help of the Principal Component Analysis (PCA), it was possible to explain about 71% of the variation between the first two PCs. Finally, applying the stepwise forward Machine Learning models, it could be demonstrated that the model works only with the parameters Wits appraisal and SNB angle was able to predict the allocation of patients to either skeletal class II or III with an accuracy of 0.95, compared to a value of 0.99 when all parameters were used (“general model”). Conclusion: There is a significant relationship between many cephalometric parameters within the different groups of gender and age. This study highlights the high accuracy and power of Wits appraisal and the SNB angle in evaluating the classification of orthodontic malocclusion.
AB - Background: The World Health Organization considers malocclusion one of the most essential oral health problems. This disease influences various aspects of patients’ health and well-being. Therefore, making it easier and more accurate to understand and diagnose patients with skeletal malocclusions is necessary. Objectives: The main aim of this research was the establishment of machine learning models to correctly classify individual Arab patients, being citizens of Israel, as skeletal class II or III. Secondary outcomes of the study included comparing cephalometric parameters between patients with skeletal class II and III and between age and gender-specific subgroups, an analysis of the correlation of various cephalometric variables, and principal component analysis in skeletal class diagnosis. Methods: This quantitative, observational study is based on data from the Orthodontic Center, Jatt, Israel. The experimental data consisted of the coded records of 502 Arab patients diagnosed as Class II or III according to the Calculated_ANB. This parameter was defined as the difference between the measured ANB angle and the individualized ANB of Panagiotidis and Witt. In this observational study, we focused on the primary aim, i.e., the establishment of machine learning models for the correct classification of skeletal class II and III in a group of Arab orthodontic patients. For this purpose, various ML models and input data was tested after identifying the most relevant parameters by conducting a principal component analysis. As secondary outcomes this study compared the cephalometric parameters and analyzed their correlations between skeletal class II and III as well as between gender and age specific subgroups. Results: Comparison of the two groups demonstrated significant differences between skeletal class II and class III patients. This was shown for the parameters NL-NSL angle, PFH/AFH ratio, SNA angle, SNB angle, SN-Ba angle. SN-Pg angle, and ML-NSL angle in skeletal class III patients, and for S-N (mm) in skeletal class II patients. In skeletal class II and skeletal class III patients, the results showed that the Calculated_ANB correlated well with many other cephalometric parameters. With the help of the Principal Component Analysis (PCA), it was possible to explain about 71% of the variation between the first two PCs. Finally, applying the stepwise forward Machine Learning models, it could be demonstrated that the model works only with the parameters Wits appraisal and SNB angle was able to predict the allocation of patients to either skeletal class II or III with an accuracy of 0.95, compared to a value of 0.99 when all parameters were used (“general model”). Conclusion: There is a significant relationship between many cephalometric parameters within the different groups of gender and age. This study highlights the high accuracy and power of Wits appraisal and the SNB angle in evaluating the classification of orthodontic malocclusion.
KW - Cephalometric parameters
KW - Class II
KW - Class III
KW - Disease classification
KW - Malocclusion
UR - http://www.scopus.com/inward/record.url?scp=85202932978&partnerID=8YFLogxK
U2 - 10.1007/s00784-024-05900-2
DO - 10.1007/s00784-024-05900-2
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 39223280
AN - SCOPUS:85202932978
SN - 1432-6981
VL - 28
JO - Clinical Oral Investigations
JF - Clinical Oral Investigations
IS - 9
M1 - 511
ER -