Late-time observations of the extraordinary Type II supernova iPTF14hls

J. Sollerman, F. Taddia, I. Arcavi, C. Fremling, C. Fransson, J. Burke, S. B. Cenko, O. Andersen, I. Andreoni, C. Barbarino, N. Blagorodova, T. G. Brink, A. V. Filippenko, A. Gal-Yam, D. Hiramatsu, G. Hosseinzadeh, D. A. Howell, T. De Jaeger, R. Lunnan, C. McCullyD. A. Perley, L. Tartaglia, G. Terreran, S. Valenti, X. Wang

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Aims. We study iPTF14hls, a luminous and extraordinary long-lived Type II supernova, which lately has attracted much attention and disparate interpretation. Methods. We have presented new optical photometry that extends the light curves up to more than three years past discovery. We also obtained optical spectroscopy over this period, and furthermore present additional space-based observations using Swift and HST. Results. After an almost constant luminosity for hundreds of days, the later light curve of iPTF14hls finally fades and then displays a dramatic drop after about 1000 d, but the supernova is still visible at the latest epochs presented. The spectra have finally turned nebular, and our very last optical spectrum likely displays signatures from the deep and dense interior of the explosion. A high-resolution HST image highlights the complex environment of the explosion in this low-luminosity galaxy. Conclusions. We provide a large number of additional late-time observations of iPTF14hls, which are (and will continue to be) used to assess the many different interpretations for this intriguing object. In particular, the very late (+1000 d) steep decline of the optical light curve is difficult to reconcile with the proposed central engine models. The lack of very strong X-ray emission, and the emergence of intermediate-width emission lines including [S II] that we propose originate from dense, processed material in the core of the supernova ejecta, are also key observational tests for both existing and future models.

Original languageEnglish
Article numberA30
JournalAstronomy and Astrophysics
Volume621
DOIs
StatePublished - 1 Jan 2019

Funding

FundersFunder number
Center for Interdisciplinary Exploration and Research in Astrophysics
Christopher R. Redlich Fund
TABASGO Foundation
National Science FoundationPHY-1607611
National Science Foundation
National Aeronautics and Space Administration
W. M. Keck Foundation
University of California
Northwestern University
Centre interdisciplinaire d'études et de recherches sur l'AllemagnePF6-170148
Centre interdisciplinaire d'études et de recherches sur l'Allemagne
National Natural Science Foundation of China11325313, 11633002
National Natural Science Foundation of China
Knut och Alice Wallenbergs Stiftelse
Vetenskapsrådet

    Keywords

    • Supernovae: general
    • Supernovae: individual: iPTF14hls

    Fingerprint

    Dive into the research topics of 'Late-time observations of the extraordinary Type II supernova iPTF14hls'. Together they form a unique fingerprint.

    Cite this