Large Language Models for Psycholinguistic Plausibility Pretesting

Samuel Joseph Amouyal*, Aya Meltzer-Asscher, Jonathan Berant*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In psycholinguistics, the creation of controlled materials is crucial to ensure that research outcomes are solely attributed to the intended manipulations and not influenced by extraneous factors. To achieve this, psycholinguists typically pretest linguistic materials, where a common pretest is to solicit plausibility judgments from human evaluators on specific sentences. In this work, we investigate whether Language Models (LMs) can be used to generate these plausibility judgements. We investigate a wide range of LMs across multiple linguistic structures and evaluate whether their plausibility judgements correlate with human judgements. We find that GPT-4 plausibility judgements highly correlate with human judgements across the structures we examine, whereas other LMs correlate well with humans on commonly used syntactic structures. We then test whether this correlation implies that LMs can be used instead of humans for pretesting. We find that when coarse-grained plausibility judgements are needed, this works well, but when fine-grained judgements are necessary, even GPT-4 does not provide satisfactory discriminative power.

Original languageEnglish
Title of host publicationEACL 2024 - 18th Conference of the European Chapter of the Association for Computational Linguistics, Findings of EACL 2024
EditorsYvette Graham, Matthew Purver, Matthew Purver
PublisherAssociation for Computational Linguistics (ACL)
Pages166-181
Number of pages16
ISBN (Electronic)9798891760936
StatePublished - 2024
Event18th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2024 - Findings of EACL 2024 - St. Julian's, Malta
Duration: 17 Mar 202422 Mar 2024

Publication series

NameEACL 2024 - 18th Conference of the European Chapter of the Association for Computational Linguistics, Findings of EACL 2024

Conference

Conference18th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2024 - Findings of EACL 2024
Country/TerritoryMalta
CitySt. Julian's
Period17/03/2422/03/24

Fingerprint

Dive into the research topics of 'Large Language Models for Psycholinguistic Plausibility Pretesting'. Together they form a unique fingerprint.

Cite this