TY - JOUR
T1 - Knockout of DDM1 in Physcomitrium patens disrupts DNA methylation with a minute effect on transposon regulation and development
AU - Griess, Ofir
AU - Domb, Katherine
AU - Katz, Aviva
AU - Harris, Keith D.
AU - Heskiau, Karina G.
AU - Ohad, Nir
AU - Zemach, Assaf
N1 - Publisher Copyright:
© 2023 Griess et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2023/3
Y1 - 2023/3
N2 - The Snf2 chromatin remodeler, DECREASE IN DNA METHYLATION 1 (DDM1) facilitates DNA methylation. In flowering plants, DDM1 mediates methylation in heterochromatin, which is targeted primarily by MET1 and CMT methylases and is necessary for silencing transposons and for proper development. DNA methylation mechanisms evolved throughout plant evolution, whereas the role of DDM1 in early terrestrial plants remains elusive. Here, we studied the function of DDM1 in the moss, Physcomitrium (Physcomitrella) patens, which has robust DNA methylation that suppresses transposons and is mediated by a MET1, a CMT, and a DNMT3 methylases. To elucidate the role of DDM1 in P. patens, we have generated a knockout mutant and found DNA methylation to be strongly disrupted at any of its sequence contexts. Symmetric CG and CHG sequences were affected stronger than asymmetric CHH sites. Furthermore, despite their separate targeting mechanisms, CG (MET) and CHG (CMT) methylation were similarly depleted by about 75%. CHH (DNMT3) methylation was overall reduced by about 25%, with an evident hyper-methylation activity within lowly-methylated euchromatic transposon sequences. Despite the strong hypomethylation effect, only a minute number of transposons were transcriptionally activated in Ppddm1. Finally, Ppddm1 was found to develop normally throughout the plant life cycle. These results demonstrate that DNA methylation is strongly dependent on DDM1 in a nonflowering plant; that DDM1 is required for plant-DNMT3 (CHH) methylases, though to a lower extent than for MET1 and CMT enzymes; and that distinct and separate methylation pathways (e.g. MET1-CG and CMT-CHG), can be equally regulated by the chromatin and that DDM1 plays a role in it. Finally, our data suggest that the biological significance of DDM1 in terms of transposon regulation and plant development, is species dependent.
AB - The Snf2 chromatin remodeler, DECREASE IN DNA METHYLATION 1 (DDM1) facilitates DNA methylation. In flowering plants, DDM1 mediates methylation in heterochromatin, which is targeted primarily by MET1 and CMT methylases and is necessary for silencing transposons and for proper development. DNA methylation mechanisms evolved throughout plant evolution, whereas the role of DDM1 in early terrestrial plants remains elusive. Here, we studied the function of DDM1 in the moss, Physcomitrium (Physcomitrella) patens, which has robust DNA methylation that suppresses transposons and is mediated by a MET1, a CMT, and a DNMT3 methylases. To elucidate the role of DDM1 in P. patens, we have generated a knockout mutant and found DNA methylation to be strongly disrupted at any of its sequence contexts. Symmetric CG and CHG sequences were affected stronger than asymmetric CHH sites. Furthermore, despite their separate targeting mechanisms, CG (MET) and CHG (CMT) methylation were similarly depleted by about 75%. CHH (DNMT3) methylation was overall reduced by about 25%, with an evident hyper-methylation activity within lowly-methylated euchromatic transposon sequences. Despite the strong hypomethylation effect, only a minute number of transposons were transcriptionally activated in Ppddm1. Finally, Ppddm1 was found to develop normally throughout the plant life cycle. These results demonstrate that DNA methylation is strongly dependent on DDM1 in a nonflowering plant; that DDM1 is required for plant-DNMT3 (CHH) methylases, though to a lower extent than for MET1 and CMT enzymes; and that distinct and separate methylation pathways (e.g. MET1-CG and CMT-CHG), can be equally regulated by the chromatin and that DDM1 plays a role in it. Finally, our data suggest that the biological significance of DDM1 in terms of transposon regulation and plant development, is species dependent.
UR - http://www.scopus.com/inward/record.url?scp=85149744654&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0279688
DO - 10.1371/journal.pone.0279688
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 36888585
AN - SCOPUS:85149744654
SN - 1932-6203
VL - 18
JO - PLoS ONE
JF - PLoS ONE
IS - 3 March
M1 - e0279688
ER -