TY - JOUR
T1 - Knee Injury Detection using MRI with Efficiently-Layered Network (ELNet)
AU - Tsai, Chen Han
AU - Kiryati, Nahum
AU - Konen, Eli
AU - Eshed, Iris
AU - Mayer, Arnaldo
N1 - Publisher Copyright:
© 2020 C.-H. Tsai, N. Kiryati, E. Konen, I. Eshed & A. Mayer.
PY - 2020
Y1 - 2020
N2 - Magnetic Resonance Imaging (MRI) is a widely-accepted imaging technique for knee injury analysis. Its advantage of capturing knee structure in three dimensions makes it the ideal tool for radiologists to locate potential tears in the knee. In order to better confront the ever growing workload of musculoskeletal (MSK) radiologists, automated tools for patients’ triage are becoming a real need, reducing delays in the reading of pathological cases. In this work, we present the Efficiently-Layered Network (ELNet), a convolutional neural network (CNN) architecture optimized for the task of initial knee MRI diagnosis for triage. Unlike past approaches, we train ELNet from scratch instead of using a transfer-learning approach. The proposed method is validated quantitatively and qualitatively, and compares favorably against state-of-the-art MRNet while using a single imaging stack (axial or coronal) as input. Additionally, we demonstrate our model’s capability to locate tears in the knee despite the absence of localization information during training. Lastly, the proposed model is extremely lightweight (< 1MB) and therefore easy to train and deploy in real clinical settings.
AB - Magnetic Resonance Imaging (MRI) is a widely-accepted imaging technique for knee injury analysis. Its advantage of capturing knee structure in three dimensions makes it the ideal tool for radiologists to locate potential tears in the knee. In order to better confront the ever growing workload of musculoskeletal (MSK) radiologists, automated tools for patients’ triage are becoming a real need, reducing delays in the reading of pathological cases. In this work, we present the Efficiently-Layered Network (ELNet), a convolutional neural network (CNN) architecture optimized for the task of initial knee MRI diagnosis for triage. Unlike past approaches, we train ELNet from scratch instead of using a transfer-learning approach. The proposed method is validated quantitatively and qualitatively, and compares favorably against state-of-the-art MRNet while using a single imaging stack (axial or coronal) as input. Additionally, we demonstrate our model’s capability to locate tears in the knee despite the absence of localization information during training. Lastly, the proposed model is extremely lightweight (< 1MB) and therefore easy to train and deploy in real clinical settings.
KW - ACL Tear
KW - Deep Learning
KW - Knee Diagnosis
KW - Knee Injury
KW - MRI
KW - Medical Triage
KW - Meniscus Tear
UR - http://www.scopus.com/inward/record.url?scp=85163122205&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.conferencearticle???
AN - SCOPUS:85163122205
SN - 2640-3498
VL - 121
SP - 784
EP - 794
JO - Proceedings of Machine Learning Research
JF - Proceedings of Machine Learning Research
T2 - 3rd Conference on Medical Imaging with Deep Learning, MIDL 2020
Y2 - 6 July 2020 through 8 July 2020
ER -