Jump to Conclusions: Short-Cutting Transformers with Linear Transformations

Alexander Yom Din, Taelin Karidi, Leshem Choshen, Mor Geva

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Transformer-based language models create hidden representations of their inputs at every layer, but only use final-layer representations for prediction. This obscures the internal decision-making process of the model and the utility of its intermediate representations. One way to elucidate this is to cast the hidden representations as final representations, bypassing the transformer computation in-between. In this work, we suggest a simple method for such casting, using linear transformations. This approximation far exceeds the prevailing practice of inspecting hidden representations from all layers, in the space of the final layer. Moreover, in the context of language modeling, our method produces more accurate predictions from hidden layers, across various model scales, architectures, and data distributions. This allows “peeking” into intermediate representations, showing that GPT-2 and BERT often predict the final output already in early layers. We then demonstrate the practicality of our method to recent early exit strategies, showing that when aiming, for example, at retention of 95% accuracy, our approach saves additional 7.9% layers for GPT-2 and 5.4% layers for BERT. Last, we extend our method to linearly approximate sub-modules, finding that attention is most tolerant to this change. Our code and learned mappings are publicly available at https://github.com/sashayd/mat.

Original languageEnglish
Title of host publication2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
EditorsNicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
PublisherEuropean Language Resources Association (ELRA)
Pages9615-9625
Number of pages11
ISBN (Electronic)9782493814104
StatePublished - 2024
EventJoint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024 - Hybrid, Torino, Italy
Duration: 20 May 202425 May 2024

Publication series

Name2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings

Conference

ConferenceJoint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
Country/TerritoryItaly
CityHybrid, Torino
Period20/05/2425/05/24

Keywords

  • early exit
  • efficiency
  • interpretability
  • language models
  • layer jump
  • linear
  • linear lense
  • logitlens
  • shortcut

Fingerprint

Dive into the research topics of 'Jump to Conclusions: Short-Cutting Transformers with Linear Transformations'. Together they form a unique fingerprint.

Cite this