IR fiber optic nonuniform surface temperature and emissivity distribution monitoring

Edward Belotserkovsky*, Ofer M.D. Shenfeld, Albert Zur, Abraham Katzir

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Infrared (IR) fiber optic radiometry of thermal surfaces offers several advantages over refractive optics radiometry. It does not need a direct line of sight to the measured thermal surface and combines high capability of monitoring small areas with high efficiency. These advantages of IR fibers are important in the control of nonuniform temperature and emissivity distributions, in which the parameters of closely situated points differ considerably and a high spatial resolution is necessary. The theoretical and experimental aspects of such radiometry are discussed in this report. Theoretical and experimental radiometric output functions of the sensor during scanning of an area with a nonuniform temperature and emissivity distributions were obtained and their dependence on the spacial location of the fiber and type of distribution were analyzed. The results suggest that IR fiberoptic radiometry will be useful in industrial, medical and domestic applications.

Original languageEnglish
Title of host publicationProceedings of SPIE - The International Society for Optical Engineering
EditorsItzhak Shladov, Yitzhak Weissman, Moshe Oron
PublisherPubl by Society of Photo-Optical Instrumentation Engineers
Pages370-380
Number of pages11
ISBN (Print)081941218X
StatePublished - 1993
Event8th Meeting on Optical Engineering on Israel: Optoelectronics and Applications in Industry and Medicine - Tel Aviv, Isr
Duration: 14 Dec 199216 Dec 1992

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume1972
ISSN (Print)0277-786X

Conference

Conference8th Meeting on Optical Engineering on Israel: Optoelectronics and Applications in Industry and Medicine
CityTel Aviv, Isr
Period14/12/9216/12/92

Fingerprint

Dive into the research topics of 'IR fiber optic nonuniform surface temperature and emissivity distribution monitoring'. Together they form a unique fingerprint.

Cite this