Abstract
TA direct theorem for best polynomial approximation of a function in Lp,0< p< 1 has recently been established. Here we present a matching inverse theorem. In particular, we obtain as a corollary the equivalence for 0 < α < k between The present result complements the known direct and inverse theorem for best polynomial approximation in Analogous results for approximating periodic functions by trigonometric polynomials in Lp[π, π] 0 < p ≤ ∞ are known.
Original language | English |
---|---|
Pages (from-to) | 151-155 |
Number of pages | 5 |
Journal | Proceedings of the American Mathematical Society |
Volume | 120 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1994 |
Keywords
- 0 < p < 1
- Best polynomial approximation
- Inverse theorems
- L spaces