TY - JOUR
T1 - Intrinsic defect in B cells of patients with hyper-immunoglobulin M syndrome
AU - Porat, Y. B.A.
AU - Levy, D.
AU - Levy, J.
AU - Zan-Bar, I.
PY - 1995
Y1 - 1995
N2 - We challenge the theory that the CD40-CD40 ligand is the only explanation for X-linked immunodeficiency in patients with hyper-immunoglobulin M (IgM) syndrome (HIGM1), and we demonstrate an intrinsic defect in the patients' B cells. Patients with HIGM1 have a defective CD40 ligand on their activated T-helper cells; therefore, they cannot receive signals for isotype switching when the cells' are activated by T cell-dependent antigens. We activated mononuclear cells from three patients with HIGM1 and from three healthy blood donors with T cell-independent mitogens and studied their proliferative responses and Ig secretion. Normal murine plasma membrane fragments were implanted into peripheral blood mononuclear cells, and the cells were activated with Staphylococcus aureus Cowan I, pokeweed mitogen, and lipopolysaccharide. This implantation significantly augmented the proliferative responses to the mitogens in two patients. However, it augmented IgM secretion in response to B-cell mitogens in only one patient. No IgG or IgA response could be detected in the implanted mononuclear cells that originated from patients with HIGM1, unlike implanted mononuclear cells from healthy donors, which responded by IgM, IgG, and IgA antibody secretion following their stimulation with B-cell mitogens. The data suggest that the B cells of patients with HIGM1 possess an additional defect which prevents Ig isotype switching in response to T cell-independent mitogens. This defect is not located in the membrane receptors or within the membrane enzymes.
AB - We challenge the theory that the CD40-CD40 ligand is the only explanation for X-linked immunodeficiency in patients with hyper-immunoglobulin M (IgM) syndrome (HIGM1), and we demonstrate an intrinsic defect in the patients' B cells. Patients with HIGM1 have a defective CD40 ligand on their activated T-helper cells; therefore, they cannot receive signals for isotype switching when the cells' are activated by T cell-dependent antigens. We activated mononuclear cells from three patients with HIGM1 and from three healthy blood donors with T cell-independent mitogens and studied their proliferative responses and Ig secretion. Normal murine plasma membrane fragments were implanted into peripheral blood mononuclear cells, and the cells were activated with Staphylococcus aureus Cowan I, pokeweed mitogen, and lipopolysaccharide. This implantation significantly augmented the proliferative responses to the mitogens in two patients. However, it augmented IgM secretion in response to B-cell mitogens in only one patient. No IgG or IgA response could be detected in the implanted mononuclear cells that originated from patients with HIGM1, unlike implanted mononuclear cells from healthy donors, which responded by IgM, IgG, and IgA antibody secretion following their stimulation with B-cell mitogens. The data suggest that the B cells of patients with HIGM1 possess an additional defect which prevents Ig isotype switching in response to T cell-independent mitogens. This defect is not located in the membrane receptors or within the membrane enzymes.
UR - http://www.scopus.com/inward/record.url?scp=0029059772&partnerID=8YFLogxK
U2 - 10.1128/cdli.2.4.412-416.1995
DO - 10.1128/cdli.2.4.412-416.1995
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0029059772
SN - 1071-412X
VL - 2
SP - 412
EP - 416
JO - Clinical and Diagnostic Laboratory Immunology
JF - Clinical and Diagnostic Laboratory Immunology
IS - 4
ER -