Interplay between population firing stability and single neuron dynamics in hippocampal networks

Edden Slomowitz, Boaz Styr, Irena Vertkin, Hila Milshtein-Parush, Israel Nelken, Michael Slutsky, Inna Slutsky

Research output: Contribution to journalArticlepeer-review

Abstract

Neuronal circuits' ability to maintain the delicate balance between stability and flexibility in changing environments is critical for normal neuronal functioning. However, to what extent individual neurons and neuronal populations maintain internal firing properties remains largely unknown. Here, we show that distributions of spontaneous population firing rates and synchrony are subject to accurate homeostatic control following increase of synaptic inhibition in cultured hippocampal networks. Reduction in firing rate riggered synaptic and intrinsic adaptive responses operating as global homeostatic mechanisms to maintain firing macro-stability, without achieving local homeostasis at the single-neuron level. Adaptive mechanisms, while stabilizing population firing properties, reduced short-term facilitation essential for synaptic discrimination of input patterns. Thus, invariant ongoing population dynamics emerge from intrinsically unstable activity patterns of individual neurons and synapses. The observed differences in the precision of homeostatic control at different spatial scales challenge cell-autonomous theory of network homeostasis and suggest existence of network-wide regulation rules.

Original languageEnglish
Article numbere04378
JournaleLife
Volume2015
Issue number4
DOIs
StatePublished - 2 Jan 2015

Fingerprint

Dive into the research topics of 'Interplay between population firing stability and single neuron dynamics in hippocampal networks'. Together they form a unique fingerprint.

Cite this