Intermolecular interaction and mechanical properties of energetic plasticizer MN reinforced 2,4,6-trinitrotoluene/1,3,5-trinitrohexahydro-1,3,5-triazine molten-energetic-composite (MEC)

Qing Ma, Maoping Wen, Baohui Zheng*, Chuanlan He, Hengjian Huang, Dabin Liu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Enhancing the mechanical properties is always an attractive challenge in the research area of energetic materials (EMs). In the present work, 1.5 wt% MN-plasticizers (mononitrotoluene compounds, a mixture of 2-nitrotoluene and 4-nitrotoluene) were applied for reinforcing a molten-energetic-composite (MEC) 2,4,6-trinitrotoluene (TNT)/1,3,5-trinitrohexahydro-1,3,5-triazine (RDX). Brazilian disk testing results show that the tensile modulus of reinforced MEC increases by 26%. In order to explore the reinforcement mechanism, quantum chemistry (QC) and molecular dynamics (MD) simulations were performed to study the structural and physical properties of the reinforced MEC. The basis set superposition error (BSSE) and the interaction energies of TNT, RDX and plasticizers were computed at the MP2/6-311++G∗∗ level. Compared with the weak interaction energy between RDX and TNT (-1.586 kJ mol-1), the interaction energies of reinforced MEC increase massively after incorporating MN-plasticizer. The SEM images of fractured surfaces from MECs also reveal that MNs can form layered deposits in TNT and closely surround crystalline RDX due to the presence of strong intermolecular interaction. Besides, MD simulation results further explain that the tensile modulus of (100) TNT and (100) RDX increases when introducing MN plasticizer separately, which agree with the change trends of mechanical properties from the Brazilian disk test. This work provides a new path for studying reinforced energetic composites by combining microscopy, mechanical testing and theoretical simulations.

Original languageEnglish
Pages (from-to)33755-33761
Number of pages7
JournalRSC Advances
Volume5
Issue number43
DOIs
StatePublished - 31 Mar 2015
Externally publishedYes

Fingerprint

Dive into the research topics of 'Intermolecular interaction and mechanical properties of energetic plasticizer MN reinforced 2,4,6-trinitrotoluene/1,3,5-trinitrohexahydro-1,3,5-triazine molten-energetic-composite (MEC)'. Together they form a unique fingerprint.

Cite this