Intermediates in degradation of the erythropoietin receptor accumulate and are degraded in lysosomes

Drorit Neumann, Lilian Wikström, Stephanie S. Watowich, Harvey F. Lodish*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

71 Scopus citations

Abstract

The erythropoietin receptor (EPO-R) is synthesized in transfected Ba/F3 cells as a major 64-kDa endoglycosidase H (Endo H)-sensitive species, with a single N-linked oligosaccharide, and a minor 62-kDa unglycosylated form. Approximately half of the newly made EPO-R is processed to a mature 66-kDa form with a Golgi-processed Endo H-resistant oligosaccharide, of which only a minor fraction is expressed at the cell surface. Both the Endo H-sensitive and the Endo H-resistant forms of the receptor have a half-life of 45-60 min (Yoshimura, A., D'Andrea, A. D., and Lodish, H. F. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 4139-4143). The mature, Endo H-resistant form of the EPO-R appears to be degraded in lysosomes or in other acidic organelles, since receptor degradation is blocked by treatment with NH4Cl, chloroquine, or leupeptin. A fraction of the Endo H-resistant EPO-R molecules is cleaved, generating two fragments of 46 and 39 kDa. The sizes of these fragments and their reactivities with carboxyl-terminal-specific antibodies indicate that the receptor is cleaved at two sites in the exoplasmic domain, 7 kDa apart, and carboxyl-terminal to the N-glycosylation site. Both fragments are membrane anchored and are probably formed in a late or post-Golgi compartment, since their formation is blocked by incubation of cells at 20°C or by incubation with brefeldin A. These membrane-anchored COOH-terminal fragments are probably degraded in lysosomes or in other acidic vesicles as cell fractionation demonstrates that they colocalize with lysosomes, and similar to the intact EPO-R, their degradation is inhibited by NH4Cl. Finally, double labeling immunofluorescence experiments demonstrate that in NH4Cl-treated cells both intact mature EPO-R and the 46- and 39-kDa fragments accumulate in lysosomes and presumably are normally degraded there. The sensitivity of the EPO-R to endoproteolytic cleavages in its exoplasmic domain may relate to its low surface expression and to its extreme metabolic instability.

Original languageEnglish
Pages (from-to)13639-13649
Number of pages11
JournalJournal of Biological Chemistry
Volume268
Issue number18
StatePublished - 25 Jun 1993
Externally publishedYes

Funding

FundersFunder number
National Heart, Lung, and Blood InstituteP01HL032262

    Fingerprint

    Dive into the research topics of 'Intermediates in degradation of the erythropoietin receptor accumulate and are degraded in lysosomes'. Together they form a unique fingerprint.

    Cite this