TY - JOUR
T1 - Interactions of three-dimensional solitons in the cubic-quintic model
AU - Burlak, Gennadiy
AU - Malomed, Boris A.
N1 - Publisher Copyright:
© 2018 Author(s).
PY - 2018/6/1
Y1 - 2018/6/1
N2 - We report results of a systematic numerical analysis of interactions between three-dimensional (3D) fundamental solitons, performed in the framework of the nonlinear Schrödinger equation (NLSE) with the cubic-quintic (CQ) nonlinearity, combining the self-focusing and defocusing terms. The 3D NLSE with the CQ terms may be realized in terms of spatiotemporal propagation of light in nonlinear optical media, and in Bose-Einstein condensates, provided that losses may be neglected. The first part of the work addresses interactions between identical fundamental solitons, with phase shift φ between them, separated by a finite distance in the free space. The outcome strongly changes with the variation of φ: in-phase solitons with φ = 0, or with sufficiently small φ, merge into a single fundamental soliton, with weak residual oscillations in it (in contrast to the merger into a strongly oscillating breather, which is exhibited by the 1D version of the same setting), while the choice of φ = π leads to fast separation between mutually repelling solitons. At intermediate values of φ, such as φ = π/2, the interaction is repulsive too, breaking the symmetry between the initially identical fundamental solitons, there appearing two solitons with different total energies (norms). The symmetry-breaking effect is qualitatively explained, similar to how it was done previously for 1D solitons. In the second part of the work, a pair of fundamental solitons trapped in a 2D potential is considered. It is demonstrated that they may form a slowly rotating robust "molecule," if initial kicks are applied to them in opposite directions, perpendicular to the line connecting their centers.
AB - We report results of a systematic numerical analysis of interactions between three-dimensional (3D) fundamental solitons, performed in the framework of the nonlinear Schrödinger equation (NLSE) with the cubic-quintic (CQ) nonlinearity, combining the self-focusing and defocusing terms. The 3D NLSE with the CQ terms may be realized in terms of spatiotemporal propagation of light in nonlinear optical media, and in Bose-Einstein condensates, provided that losses may be neglected. The first part of the work addresses interactions between identical fundamental solitons, with phase shift φ between them, separated by a finite distance in the free space. The outcome strongly changes with the variation of φ: in-phase solitons with φ = 0, or with sufficiently small φ, merge into a single fundamental soliton, with weak residual oscillations in it (in contrast to the merger into a strongly oscillating breather, which is exhibited by the 1D version of the same setting), while the choice of φ = π leads to fast separation between mutually repelling solitons. At intermediate values of φ, such as φ = π/2, the interaction is repulsive too, breaking the symmetry between the initially identical fundamental solitons, there appearing two solitons with different total energies (norms). The symmetry-breaking effect is qualitatively explained, similar to how it was done previously for 1D solitons. In the second part of the work, a pair of fundamental solitons trapped in a 2D potential is considered. It is demonstrated that they may form a slowly rotating robust "molecule," if initial kicks are applied to them in opposite directions, perpendicular to the line connecting their centers.
UR - http://www.scopus.com/inward/record.url?scp=85049029039&partnerID=8YFLogxK
U2 - 10.1063/1.5034361
DO - 10.1063/1.5034361
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85049029039
SN - 1054-1500
VL - 28
JO - Chaos
JF - Chaos
IS - 6
M1 - 063121
ER -