Interactions between the circadian clock and TGF-β signaling pathway in zebrafish

Hadas E. Sloin, Gennaro Ruggiero, Amir Rubinstein, Sima Smadja Storz, Nicholas S. Foulkes, Yoav Gothilf

Research output: Contribution to journalArticlepeer-review

Abstract

Background TGF-β signaling is a cellular pathway that functions in most cells and has been shown to play a role in multiple processes, such as the immune response, cell differentiation and proliferation. Recent evidence suggests a possible interaction between TGF-β signaling and the molecular circadian oscillator. The current study aims to characterize this interaction in the zebrafish at the molecular and behavioral levels, taking advantage of the early development of a functional circadian clock and the availability of light-entrainable clock-containing cell lines. Results Smad3a, a TGF-β signaling-related gene, exhibited a circadian expression pattern throughout the brain of zebrafish larvae. Both pharmacological inhibition and indirect activation of TGF-β signaling in zebrafish Pac-2 cells caused a concentration dependent disruption of rhythmic promoter activity of the core clock gene Per1b. Inhibition of TGF-β signaling in intact zebrafish larvae caused a phase delay in the rhythmic expression of Per1b mRNA. TGF-β inhibition also reversibly disrupted, phase delayed and increased the period of circadian rhythms of locomotor activity in zebrafish larvae. Conclusions The current research provides evidence for an interaction between the TGF-β signaling pathway and the circadian clock system at the molecular and behavioral levels, and points to the importance of TGF-β signaling for normal circadian clock function. Future examination of this interaction should contribute to a better understanding of its underlying mechanisms and its influence on a variety of cellular processes including the cell cycle, with possible implications for cancer development and progression.

Original languageEnglish
Article numbere0199777
JournalPLoS ONE
Volume13
Issue number6
DOIs
StatePublished - Jun 2018

Fingerprint

Dive into the research topics of 'Interactions between the circadian clock and TGF-β signaling pathway in zebrafish'. Together they form a unique fingerprint.

Cite this