Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding

Qidi Ran, Xiao Xu, Pradip Dey, Shun Yu, Yan Lu, Joachim Dzubiella, Rainer Haag, Matthias Ballauff

Research output: Contribution to journalArticlepeer-review


We study the thermodynamics of the interaction between human serum albumin (HSA) and dendritic polyglycerol sulfate (dPGS) of different sizes (generations) by isothermal titration calorimetry (ITC) and computer simulations. The analysis by ITC revealed the formation of a 1:1 complex for the dPGS-G2 of second generation. The secondary structure of HSA remained unchanged in the presence of dPGS-G2, as shown by circular dichroism. For higher generations, several HSA are bound to one polymer (dPGS-G4: 2; dPGS-G5.5: 4). The Gibbs free energy ΔGb was determined at different temperatures and salt concentrations. The binding constant Kb exhibited a logarithmic dependence on the salt concentration thus indicating a marked contribution of counterion-release entropy to ΔGb. The number of released counterions (∼4) was found to be independent of temperature. In addition, the temperature dependence of ΔGb was small, whereas the enthalpy ΔHITC was found to vary strongly with temperature. The corresponding heat capacity change ΔCp,ITC for different generations was of similar values [8 kJ/(mol K)]. The nonlinear van't Hoff analysis of ΔGb revealed a significant heat capacity change ΔCp,vH of similar magnitude [6 kJ/(mol K)] accompanied by a strong enthalpy-entropy compensation. ΔGb obtained by molecular dynamics simulation with implicit water and explicit ions coincided with experimental results. The agreement indicates that the enthalpy-entropy compensation assigned to hydration effects is practically total and the binding affinity is fully governed by electrostatic interactions.

Original languageEnglish
Article number163324
JournalJournal of Chemical Physics
Issue number16
StatePublished - 28 Oct 2018
Externally publishedYes


Dive into the research topics of 'Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding'. Together they form a unique fingerprint.

Cite this