Intelligent mesh scissoring using 3D snakes

Yunjin Lee*, Seungyong Lee, Ariel Shamir, Daniel Cohen-Or, Hans Peter Seidel

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

Abstract

Mesh partitioning and parts extraction have become key ingredients for many mesh manipulation applications both manual and automatic. In this paper, we present an intelligent scissoring operator for meshes which supports both automatic segmentation and manual cutting. Instead of segmenting the mesh by clustering, our approach concentrates on finding and defining the contours for cutting. This approach is based on the minima rule, which states that human perception usually divides a surface into parts along the contours of concave discontinuity of the tangent plane. The technique uses feature extraction to find such candidate feature contours. Subsequently, such a contour can be selected either automatically or manually, or the user may draw a 2D line to start the scissoring process. The given open contour is completed to form a loop around a specific part of the mesh, and this loop is used as the initial position of a 3D geometric snake. The snake moves by relaxation until it settles to define the final scissoring position. This process uses several fundamental geometric mesh attributes, such as curvature and centricity, and enables both automatic segmentation and an easy-to-use intelligent-scissoring operator.

Original languageEnglish
Pages (from-to)279-287
Number of pages9
JournalProceedings - Pacific Conference on Computer Graphics and Applications
DOIs
StatePublished - 2004
EventProceedings - 12th Pacific Conference on Computer Graphics and Applications, PG 2004 - Seoul, Korea, Republic of
Duration: 6 Oct 20048 Oct 2004

Fingerprint

Dive into the research topics of 'Intelligent mesh scissoring using 3D snakes'. Together they form a unique fingerprint.

Cite this