Abstract
Let J be a norm-continuous functional on the space B of bounded Σ-measurable real valued functions on a set S, where Σ is an algebra of subsets of S. Define a set function v on Σ by: v(E) equals the value of I at the indicator function of E. For each a in B let J(a)= 0 ∫ -∞(v(a ≥ α) - v(S)) dα+ 0 ∫ ∞ v(a ≥ α) dα.Then I = J on B if and only if I(b + c) = 1(b) + 1(c) whenever (b(s)-b(t))(c(s)-c(t)) ≥ 0 for all s and t in S.
Original language | English |
---|---|
Pages (from-to) | 255-261 |
Number of pages | 7 |
Journal | Proceedings of the American Mathematical Society |
Volume | 97 |
Issue number | 2 |
DOIs | |
State | Published - Jun 1986 |