TY - JOUR
T1 - Insights into the molecular relationships between malate and lactate dehydrogenases
T2 - Structural and biochemical properties of monomeric and dimeric intermediates of a mutant of tetrameric L-[LDH-like] malate dehydrogenase from the halophilic archaeon Haloarcula marismortui
AU - Madern, Dominique
AU - Ebel, Christine
AU - Mevarech, Moshe
AU - Richard, Stéphane B.
AU - Pfister, Claude
AU - Zaccai, Giuseppe
PY - 2000/2/8
Y1 - 2000/2/8
N2 - L-Malate (MalDH) and L-lactate (LDH) dehydrogenases belong to the same family of NAD-dependent enzymes. LDHs are tetramers, whereas MalDHs can be either dimeric or tetrameric. To gain insight into molecular relationships between LDHs and MalDHs, we studied folding intermediates of a mutant of the LDH-like MalDH (a protein with LDH-like structure and MalDH enzymatic activity) from the halophilic archaeon Haloarcula marismortui (Hm MalDH). Crystallographic analysis of Hm MalDH had shown a tetramer made up of two dimers interacting mainly via complex salt bridge clusters. In the R207S/R292S Hm MalDH mutant, these salt bridges are disrupted. Its structural parameters, determined by neutron scattering and analytical centrifugation under different conditions, showed the protein to be a tetramer in 4 M NaCl. At lower salt concentrations, stable oligomeric intermediates could be trapped at a given pH, temperature, or NaCl solvent concentration. The spectroscopic properties and enzymatic behavior of monomeric, dimeric, and tetrameric species were thus characterized. The properties of the dimeric intermediate were compared to those of dimeric intermediates of LDH and dimeric MalDHs. A detailed analysis of the putative dimer-dimer contact regions in these enzymes provided an explanation of why some can form tetramers and others cannot. The study presented here makes Hm MalDH the best characterized example so far of an LDH-like MalDH.
AB - L-Malate (MalDH) and L-lactate (LDH) dehydrogenases belong to the same family of NAD-dependent enzymes. LDHs are tetramers, whereas MalDHs can be either dimeric or tetrameric. To gain insight into molecular relationships between LDHs and MalDHs, we studied folding intermediates of a mutant of the LDH-like MalDH (a protein with LDH-like structure and MalDH enzymatic activity) from the halophilic archaeon Haloarcula marismortui (Hm MalDH). Crystallographic analysis of Hm MalDH had shown a tetramer made up of two dimers interacting mainly via complex salt bridge clusters. In the R207S/R292S Hm MalDH mutant, these salt bridges are disrupted. Its structural parameters, determined by neutron scattering and analytical centrifugation under different conditions, showed the protein to be a tetramer in 4 M NaCl. At lower salt concentrations, stable oligomeric intermediates could be trapped at a given pH, temperature, or NaCl solvent concentration. The spectroscopic properties and enzymatic behavior of monomeric, dimeric, and tetrameric species were thus characterized. The properties of the dimeric intermediate were compared to those of dimeric intermediates of LDH and dimeric MalDHs. A detailed analysis of the putative dimer-dimer contact regions in these enzymes provided an explanation of why some can form tetramers and others cannot. The study presented here makes Hm MalDH the best characterized example so far of an LDH-like MalDH.
UR - http://www.scopus.com/inward/record.url?scp=0034620517&partnerID=8YFLogxK
U2 - 10.1021/bi9910023
DO - 10.1021/bi9910023
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0034620517
SN - 0006-2960
VL - 39
SP - 1001
EP - 1010
JO - Biochemistry
JF - Biochemistry
IS - 5
ER -