Innovative functional polymerization of pyrrole-N-propionic acid onto WS2 nanotubes using cerium-doped maghemite nanoparticles for photothermal therapy

Tzuriel Levin, Yakir Lampel, Gaya Savyon, Esthy Levy, Yifat Harel, Yuval Elias, Moshe Sinvani, Iftach Nachman, Jean Paul Lellouche

Research output: Contribution to journalArticlepeer-review

Abstract

Tungsten disulfide nanotubes (WS2-NTs) were found to be very active for photothermal therapy. However, their lack of stability in aqueous solutions inhibits their use in many applications, especially in biomedicine. Few attempts were made to chemically functionalize the surface of the NTs to improve their dispersability. Here, we present a new polymerization method using cerium-doped maghemite nanoparticles (CM-NPs) as magnetic nanosized linkers between the WS2-NT surface and pyrrole-N-propionic acid monomers, which allow in situ polymerization onto the composite surface. This unique composite is magnetic, and contains two active entities for photothermal therapy—WS2 and the polypyrrole. The photothermal activity of the composite was tested at a wavelength of 808 nm, and significant thermal activity was observed. Moreover, the polycarboxylated polymeric coating of the NTs enables effective linkage of additional molecules or drugs via covalent bonding. In addition, a new method was established for large-scale synthesis of CM-NPs and WS2-NT-CM composites.

Original languageEnglish
Article number18883
JournalScientific Reports
Volume11
Issue number1
DOIs
StatePublished - Dec 2021

Fingerprint

Dive into the research topics of 'Innovative functional polymerization of pyrrole-N-propionic acid onto WS2 nanotubes using cerium-doped maghemite nanoparticles for photothermal therapy'. Together they form a unique fingerprint.

Cite this