TY - JOUR
T1 - Innate recognition of water bodies in echolocating bats
AU - Greif, Stefan
AU - Siemers, Björn M.
N1 - Funding Information:
We thank Ivailo Borissov, Christiana Popova, Maike Schuchmann and Markus Schuller for help during fieldwork, Henrik Brumm, Richard Holland, Nachum Ulanovsky, Sue-Anne Zollinger and Niels Dingemannse for comments and discussion on the paper, as well as the Directorate of the Rusenski Lom Nature Park (director Milko Belberov) and the Bulgarian Bat Research and Conservation Group for cooperation and support. This study was funded by a Human Frontier Science Program grant to B.M.S. and by the Max Planck Society.
PY - 2010
Y1 - 2010
N2 - In the course of their lives, most animals must find different specific habitat and microhabitat types for survival and reproduction. Yet, in vertebrates, little is known about the sensory cues that mediate habitat recognition. In free flying bats the echolocation of insect-sized point targets is well understood, whereas how they recognize and classify spatially extended echo targets is currently unknown. In this study, we show how echolocating bats recognize ponds or other water bodies that are crucial for foraging, drinking and orientation. With wild bats of 15 different species (seven genera from three phylogenetically distant, large bat families), we found that bats perceived any extended, echo-acoustically smooth surface to be water, even in the presence of conflicting information from other sensory modalities. In addition, naive juvenile bats that had never before encountered a water body showed spontaneous drinking responses from smooth plates. This provides the first evidence for innate recognition of a habitat cue in a mammal.
AB - In the course of their lives, most animals must find different specific habitat and microhabitat types for survival and reproduction. Yet, in vertebrates, little is known about the sensory cues that mediate habitat recognition. In free flying bats the echolocation of insect-sized point targets is well understood, whereas how they recognize and classify spatially extended echo targets is currently unknown. In this study, we show how echolocating bats recognize ponds or other water bodies that are crucial for foraging, drinking and orientation. With wild bats of 15 different species (seven genera from three phylogenetically distant, large bat families), we found that bats perceived any extended, echo-acoustically smooth surface to be water, even in the presence of conflicting information from other sensory modalities. In addition, naive juvenile bats that had never before encountered a water body showed spontaneous drinking responses from smooth plates. This provides the first evidence for innate recognition of a habitat cue in a mammal.
UR - http://www.scopus.com/inward/record.url?scp=78650066549&partnerID=8YFLogxK
U2 - 10.1038/ncomms1110
DO - 10.1038/ncomms1110
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:78650066549
SN - 2041-1723
VL - 1
JO - Nature Communications
JF - Nature Communications
IS - 8
M1 - 107
ER -