TY - JOUR
T1 - Inhomogeneity of tissue-level strain distributions in individual trabeculae
T2 - Mathematical model studies of normal and osteoporosis cases
AU - Gefen, Amit
AU - Portnoy, Sigal
AU - Diamant, Idit
PY - 2008/6
Y1 - 2008/6
N2 - Little is known about the distributions of mechanical strains and stresses in individual trabeculae of cancellous bone, despite evidence that tissue-level strains affect the metabolism of bone. Recently, micro-finite element (micro-FE) studies have provided the first insights into the mechanical conditions in trabeculae, and suggested that osteoporotic cancellous bone experience higher and substantially less-uniform strains with respect to healthy cancellous bone. We may therefore ask whether the inhomogeneity of bone tissue strains is predominantly a consequence of micro-architectural differences between trabeculae, or is it mostly caused by the curvatures of each individual trabecula. Accordingly, the objectives of the present study were to determine the contribution of the shape of a trabecula to the intra-trabecula strain inhomogeneity, and to determine potential differences in intra-trabecula strain inhomogeneities between normal and thinner, osteoporotic-like trabeculae. We employed our previously reported generic single-trabecula model, which is a mathematical representation of the shape of a trabecula based on statistical analyses of mammalian trabecular dimensions. The single-trabecula model was loaded axially and in bending, and strain distributions were calculated for individual trabeculae as well as for "populations" of trabeculae, formed by assigning different trabecular thickness values in the trabecular model, in order to represent the distributions of trabecular shapes in normal and osteoporotic bones. We found that when subjected to equivalent loads, thinner, osteoporotic-like individual trabeculae and populations of thin trabeculae developed substantially greater strain inhomogeneities compared with normal trabeculae. We conclude that the intra-trabecula strain inhomogeneities are likely to be an important factor contributing to the overall increased strain inhomogeneity in osteoporotic cancellous bone, as previously observed in micro-FE studies.
AB - Little is known about the distributions of mechanical strains and stresses in individual trabeculae of cancellous bone, despite evidence that tissue-level strains affect the metabolism of bone. Recently, micro-finite element (micro-FE) studies have provided the first insights into the mechanical conditions in trabeculae, and suggested that osteoporotic cancellous bone experience higher and substantially less-uniform strains with respect to healthy cancellous bone. We may therefore ask whether the inhomogeneity of bone tissue strains is predominantly a consequence of micro-architectural differences between trabeculae, or is it mostly caused by the curvatures of each individual trabecula. Accordingly, the objectives of the present study were to determine the contribution of the shape of a trabecula to the intra-trabecula strain inhomogeneity, and to determine potential differences in intra-trabecula strain inhomogeneities between normal and thinner, osteoporotic-like trabeculae. We employed our previously reported generic single-trabecula model, which is a mathematical representation of the shape of a trabecula based on statistical analyses of mammalian trabecular dimensions. The single-trabecula model was loaded axially and in bending, and strain distributions were calculated for individual trabeculae as well as for "populations" of trabeculae, formed by assigning different trabecular thickness values in the trabecular model, in order to represent the distributions of trabecular shapes in normal and osteoporotic bones. We found that when subjected to equivalent loads, thinner, osteoporotic-like individual trabeculae and populations of thin trabeculae developed substantially greater strain inhomogeneities compared with normal trabeculae. We conclude that the intra-trabecula strain inhomogeneities are likely to be an important factor contributing to the overall increased strain inhomogeneity in osteoporotic cancellous bone, as previously observed in micro-FE studies.
KW - Cancellous bone biomechanics
KW - Finite element analysis
KW - Generic trabecula building block
KW - Spongy bone
UR - http://www.scopus.com/inward/record.url?scp=44349154895&partnerID=8YFLogxK
U2 - 10.1016/j.medengphy.2007.07.001
DO - 10.1016/j.medengphy.2007.07.001
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:44349154895
VL - 30
SP - 624
EP - 630
JO - Medical Engineering and Physics
JF - Medical Engineering and Physics
SN - 1350-4533
IS - 5
ER -