TY - JOUR
T1 - Inequalities for orthonormal Laguerre polynomials
AU - Krasikov, Ilia
PY - 2007/1
Y1 - 2007/1
N2 - Let Mkα (x) = fenced(Lk(α) (x))2 e- x xα + 1, where Lk(α) (x) is the orthonormal Laguerre polynomial of degree k. For α ≥ 24 we will establish the following inequality 10- 8 < k1 / 6 (k + α + 1)- 1 / 2 under(max, x ≥ 0) Mkα (x) < 1444,where the upper bound holds for k ≥ 35, and the lower one for k ≥ 2 × 1010. Sharp pointwise estimates on Mkα and related functions for x ≥ 0 are also given.
AB - Let Mkα (x) = fenced(Lk(α) (x))2 e- x xα + 1, where Lk(α) (x) is the orthonormal Laguerre polynomial of degree k. For α ≥ 24 we will establish the following inequality 10- 8 < k1 / 6 (k + α + 1)- 1 / 2 under(max, x ≥ 0) Mkα (x) < 1444,where the upper bound holds for k ≥ 35, and the lower one for k ≥ 2 × 1010. Sharp pointwise estimates on Mkα and related functions for x ≥ 0 are also given.
KW - Laguerre polynomials
KW - Orthogonal polynomials
UR - http://www.scopus.com/inward/record.url?scp=33751331182&partnerID=8YFLogxK
U2 - 10.1016/j.jat.2006.04.005
DO - 10.1016/j.jat.2006.04.005
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:33751331182
SN - 0021-9045
VL - 144
SP - 1
EP - 26
JO - Journal of Approximation Theory
JF - Journal of Approximation Theory
IS - 1
ER -