TY - JOUR
T1 - Increased oxidative stress in ataxia telangiectasia evidenced by alterations in redox state of brains from Atm-deficient mice
AU - Kamsler, A.
AU - Daily, D.
AU - Hochman, A.
AU - Stern, N.
AU - Shiloh, Y.
AU - Rotman, G.
AU - Barzilai, A.
PY - 2001/3/1
Y1 - 2001/3/1
N2 - Ataxia-telangiectasia (A-T) is a genetic disorder caused by mutational inactivation of the ATM gene. A-T patients display a pleiotropic phenotype and suffer primarily from progressive ataxia caused by degeneration of cerebellar Purkinje and granule neurons. Disruption of the mouse Atm locus creates a murine model of A-T that exhibits most of the clinical features of the human disease. We previously hypothesized that some aspects of A-T, such as the preferential loss of certain neurons, could result from a continuous state of increased oxidative stress (G. Rotman and Y. Shiloh, Cancer Surv., 29: 285-304, 1997; G. Rotman and Y. Shiloh, BioEssays, 19: 911-917, 1997). The present work tests this hypothesis by analyzing markers of redox state in brains of Atm-deficient mice. We found alterations in the levels of thiol-containing compounds in Atm (-/-) brains, as well as significant changes in the activities of thioredoxin, catalase, and manganese superoxide dismutase in Atm (-/-) cerebella. These changes are indicative of increased levels of reactive oxygen species, which are seen primarily in the cerebellum of Atm-deficient mice. Our findings support the hypothesis that the absence of functional ATM results in oxidative stress, which may be an important cause of the degeneration of cerebellar neurons in A-T.
AB - Ataxia-telangiectasia (A-T) is a genetic disorder caused by mutational inactivation of the ATM gene. A-T patients display a pleiotropic phenotype and suffer primarily from progressive ataxia caused by degeneration of cerebellar Purkinje and granule neurons. Disruption of the mouse Atm locus creates a murine model of A-T that exhibits most of the clinical features of the human disease. We previously hypothesized that some aspects of A-T, such as the preferential loss of certain neurons, could result from a continuous state of increased oxidative stress (G. Rotman and Y. Shiloh, Cancer Surv., 29: 285-304, 1997; G. Rotman and Y. Shiloh, BioEssays, 19: 911-917, 1997). The present work tests this hypothesis by analyzing markers of redox state in brains of Atm-deficient mice. We found alterations in the levels of thiol-containing compounds in Atm (-/-) brains, as well as significant changes in the activities of thioredoxin, catalase, and manganese superoxide dismutase in Atm (-/-) cerebella. These changes are indicative of increased levels of reactive oxygen species, which are seen primarily in the cerebellum of Atm-deficient mice. Our findings support the hypothesis that the absence of functional ATM results in oxidative stress, which may be an important cause of the degeneration of cerebellar neurons in A-T.
UR - http://www.scopus.com/inward/record.url?scp=0035266308&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0035266308
SN - 0008-5472
VL - 61
SP - 1849
EP - 1854
JO - Cancer Research
JF - Cancer Research
IS - 5
ER -