In vivo structure/function and expression analysis of the CX3C chemokine fractalkine

Ki Wook Kim, Alexandra Vallon-Eberhard, Ehud Zigmond, Julia Farache, Elias Shezen, Guy Shakhar, Andreas Ludwig, Sergio A. Lira, Steffen Jung*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


The CX3C chemokine family is composed of only one member, CX3CL1, also known as fractalkine, which in mice is the sole ligand of the G protein-coupled, 7-transmembrane receptor CX3CR1. Unlike classic small peptide chemokines, CX3CL1 is synthesized as a membrane-anchored protein that can promote integrin-independent adhesion. Subsequent cleavage by metalloproteases, either constitutive or induced, can generate shed CX3CL1 entities that potentially have chemoattractive activity. To study the CX3C interface in tissues of live animals, we generated transgenic mice (CX3CL1cherry:CX 3CR1gfp), which express red and green fluorescent reporter genes under the respective control of the CX3CL1 and CX 3CR1 promoters. Furthermore, we performed a structure/function analysis to differentiate the in vivo functions of membrane-tethered versus shed CX3CL1 moieties by comparing their respective ability to correct established defects in macrophage function and leukocyte survival in CX 3CL1-deficient mice. Specifically, expression of CX 3CL1105Δ, an obligatory soluble CX3CL1 isoform, reconstituted the formation of transepithelial dendrites by intestinal macrophages but did not rescue circulating Ly6Clo CX 3CR1hi blood monocytes in CX3CR1 gfp/gfp mice. Instead, monocyte survival required the full-length membrane-anchored CX3CL1, suggesting differential activities of tethered and shed CX3CL1 entities.

Original languageEnglish
Pages (from-to)e156-e167
Issue number22
StatePublished - 24 Nov 2011


FundersFunder number
National Institute of Diabetes and Digestive and Kidney DiseasesP01DK072201


    Dive into the research topics of 'In vivo structure/function and expression analysis of the CX3C chemokine fractalkine'. Together they form a unique fingerprint.

    Cite this