Improved recommendations via (More) collaboration

Rubi Boim*, Haim Kaplan, Tova Milo, Ronitt Rubinfeld

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We consider in this paper a popular class of recommender systems that are based on Collaborative Filtering (CF for short). CF is the process of predicting customer ratings to items based on previous ratings of (similar) users to (similar) items, and is typically used by a single organization, using its own customer ratings. We argue here that a multi-organization collaboration, even for organizations operating in different subject domains, can greatly improve the quality of the recommendations that the individual organizations provide to their users. To substantiate this claim, we present C2F (Collaborative CF), a recommender system that retains the simplicity and efficiency of classical CF, while allowing distinct organizations to collaborate and boost their recommendations. C2F employs CF in a distributed fashion that improves the quality of the generated recommendations, while minimizing the amount of data exchanged between the collaborating parties. Key ingredient of the solution are succinct signatures that can be computed locally for items (users) in a given organization and suffice for identifying similar items (users) in the collaborating organizations. We show that the use of such compact signatures not only reduces data exchange but also allows to speed up, by over 50%, the recommendations computation time.

Original languageEnglish
Title of host publicationProceedings of the 13th International Workshop on the Web and Databases, WebDB 2010, Co-located with ACM SIGMOD 2010
PublisherAssociation for Computing Machinery
ISBN (Print)9781450301862
DOIs
StatePublished - 2010
Event13th International Workshop on the Web and Databases, WebDB 2010, Co-located with ACM SIGMOD 2010 - Indianapolis, IN, United States
Duration: 6 Jun 20106 Jun 2010

Publication series

NameProceedings of the ACM SIGMOD International Conference on Management of Data
ISSN (Print)0730-8078

Conference

Conference13th International Workshop on the Web and Databases, WebDB 2010, Co-located with ACM SIGMOD 2010
Country/TerritoryUnited States
CityIndianapolis, IN
Period6/06/106/06/10

Funding

FundersFunder number
Seventh Framework Programme214898

    Fingerprint

    Dive into the research topics of 'Improved recommendations via (More) collaboration'. Together they form a unique fingerprint.

    Cite this