Improved key recovery attacks on reduced-round aes with practical data and memory complexities

Achiya Bar-On, Orr Dunkelman, Nathan Keller, Eyal Ronen, Adi Shamir

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Determining the security of AES is a central problem in cryptanalysis, but progress in this area had been slow and only a handful of cryptanalytic techniques led to significant advancements. At Eurocrypt 2017 Grassi et al. presented a novel type of distinguisher for AES-like structures, but so far all the published attacks which were based on this distinguisher were inferior to previously known attacks in their complexity. In this paper we combine the technique of Grassi et al. with several other techniques to obtain the best known key recovery attack on 5-round AES in the single-key model, reducing its overall complexity from about (FORMULA PRESENTED) to about (FORMULA PRESENTED). Extending our techniques to 7-round AES, we obtain the best known attacks on AES-192 which use practical amounts of data and memory, breaking the record for such attacks which was obtained 18 years ago by the classical Square attack.

Original languageEnglish
Title of host publicationAdvances in Cryptology – CRYPTO 2018 - 38th Annual International Cryptology Conference, 2018, Proceedings
EditorsAlexandra Boldyreva, Hovav Shacham
PublisherSpringer Verlag
Pages185-212
Number of pages28
ISBN (Print)9783319968803
DOIs
StatePublished - 2018
Externally publishedYes
Event38th Annual International Cryptology Conference, CRYPTO 2018 - Santa Barbara, United States
Duration: 19 Aug 201823 Aug 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10992 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference38th Annual International Cryptology Conference, CRYPTO 2018
Country/TerritoryUnited States
CitySanta Barbara
Period19/08/1823/08/18

Fingerprint

Dive into the research topics of 'Improved key recovery attacks on reduced-round aes with practical data and memory complexities'. Together they form a unique fingerprint.

Cite this