Improved bounds on the word error probability of RA(2) codes with linear-programming-based decoding

Nissim Halabi*, Guy Even

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

This paper deals with the linear-programming-based decoding algorithm of Feldman and Karger for repeat-accumulate "turbo-like" codes. We present a new structural characterization that captures the event that decoding fails. Based on this structural characterization, we develop polynomial algorithms that, given an RA(2) code, compute upper and lower bounds on the word error probability Pw for the binary-symmetric and the additive white Gaussian noise (AWGN) channels. Our experiments with an implementation of these algorithms for bounding Pw demonstrate in many interesting cases an improvement in the upper bound on the word error probability by a factor of over 1000 compared to the bounds by Feldman et al.. The experiments also indicate that the improvement in upper bound increases as the codeword length increases and the channel noise decreases. The computed lower bounds on the word error probability in our experiments are roughly ten times smaller than the upper bound.

Original languageEnglish
Pages (from-to)265-280
Number of pages16
JournalIEEE Transactions on Information Theory
Volume51
Issue number1
DOIs
StatePublished - Jan 2005

Keywords

  • Linear-programming-based decoding
  • Repeat-accumulate codes
  • Turbo codes
  • Word error rate

Fingerprint

Dive into the research topics of 'Improved bounds on the word error probability of RA(2) codes with linear-programming-based decoding'. Together they form a unique fingerprint.

Cite this