TY - JOUR
T1 - Improved and optimized drug repurposing for the SARS-CoV-2 pandemic
AU - Cohen, Sarel
AU - Hershcovitch, Moshik
AU - Taraz, Martin
AU - Kißig, Otto
AU - Issac, Davis
AU - Wood, Andrew
AU - Waddington, Daniel
AU - Chin, Peter
AU - Friedrich, Tobias
N1 - Publisher Copyright:
© 2023 Cohen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2023/3
Y1 - 2023/3
N2 - The active global SARS-CoV-2 pandemic caused more than 426 million cases and 5.8 million deaths worldwide. The development of completely new drugs for such a novel disease is a challenging, time intensive process. Despite researchers around the world working on this task, no effective treatments have been developed yet. This emphasizes the importance of drug repurposing, where treatments are found among existing drugs that are meant for different diseases. A common approach to this is based on knowledge graphs, that condense relationships between entities like drugs, diseases and genes. Graph neural networks (GNNs) can then be used for the task at hand by predicting links in such knowledge graphs. Expanding on state-of-the-art GNN research, Doshi et al. recently developed the DR-COVID model. We further extend their work using additional output interpretation strategies. The best aggregation strategy derives a top-100 ranking of 8,070 candidate drugs, 32 of which are currently being tested in COVID-19-related clinical trials. Moreover, we present an alternative application for the model, the generation of additional candidates based on a given pre-selection of drug candidates using collaborative filtering. In addition, we improved the implementation of the DR-COVID model by significantly shortening the inference and pre-processing time by exploiting data-parallelism. As drug repurposing is a task that requires high computation and memory resources, we further accelerate the post-processing phase using a new emerging hardware—we propose a new approach to leverage the use of high-capacity Non-Volatile Memory for aggregate drug ranking.
AB - The active global SARS-CoV-2 pandemic caused more than 426 million cases and 5.8 million deaths worldwide. The development of completely new drugs for such a novel disease is a challenging, time intensive process. Despite researchers around the world working on this task, no effective treatments have been developed yet. This emphasizes the importance of drug repurposing, where treatments are found among existing drugs that are meant for different diseases. A common approach to this is based on knowledge graphs, that condense relationships between entities like drugs, diseases and genes. Graph neural networks (GNNs) can then be used for the task at hand by predicting links in such knowledge graphs. Expanding on state-of-the-art GNN research, Doshi et al. recently developed the DR-COVID model. We further extend their work using additional output interpretation strategies. The best aggregation strategy derives a top-100 ranking of 8,070 candidate drugs, 32 of which are currently being tested in COVID-19-related clinical trials. Moreover, we present an alternative application for the model, the generation of additional candidates based on a given pre-selection of drug candidates using collaborative filtering. In addition, we improved the implementation of the DR-COVID model by significantly shortening the inference and pre-processing time by exploiting data-parallelism. As drug repurposing is a task that requires high computation and memory resources, we further accelerate the post-processing phase using a new emerging hardware—we propose a new approach to leverage the use of high-capacity Non-Volatile Memory for aggregate drug ranking.
UR - http://www.scopus.com/inward/record.url?scp=85150434449&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0266572
DO - 10.1371/journal.pone.0266572
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 36928101
AN - SCOPUS:85150434449
SN - 1932-6203
VL - 18
JO - PLoS ONE
JF - PLoS ONE
IS - 3 March
M1 - e0266572
ER -