TY - GEN
T1 - Implicit Style-Content Separation Using B-LoRA
AU - Frenkel, Yarden
AU - Vinker, Yael
AU - Shamir, Ariel
AU - Cohen-Or, Daniel
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
PY - 2025
Y1 - 2025
N2 - Image stylization involves manipulating the visual appearance and texture (style) of an image while preserving its underlying objects, structures, and concepts (content). The separation of style and content is essential for manipulating the image’s style independently from its content, ensuring a harmonious and visually pleasing result. Achieving this separation requires a deep understanding of both the visual and semantic characteristics of images, often necessitating the training of specialized models or employing heavy optimization. In this paper, we introduce B-LoRA, a method that leverages LoRA (Low-Rank Adaptation) to implicitly separate the style and content components of a single image, facilitating various image stylization tasks. By analyzing the architecture of SDXL combined with LoRA, we find that jointly learning the LoRA weights of two specific blocks (referred to as B-LoRAs) achieves style-content separation that cannot be achieved by training each B-LoRA independently. Consolidating the training into only two blocks and separating style and content allows for significantly improving style manipulation and overcoming overfitting issues often associated with model fine-tuning. Once trained, the two B-LoRAs can be used as independent components to allow various image stylization tasks, including image style transfer, text-based image stylization, consistent style generation, and style-content mixing.
AB - Image stylization involves manipulating the visual appearance and texture (style) of an image while preserving its underlying objects, structures, and concepts (content). The separation of style and content is essential for manipulating the image’s style independently from its content, ensuring a harmonious and visually pleasing result. Achieving this separation requires a deep understanding of both the visual and semantic characteristics of images, often necessitating the training of specialized models or employing heavy optimization. In this paper, we introduce B-LoRA, a method that leverages LoRA (Low-Rank Adaptation) to implicitly separate the style and content components of a single image, facilitating various image stylization tasks. By analyzing the architecture of SDXL combined with LoRA, we find that jointly learning the LoRA weights of two specific blocks (referred to as B-LoRAs) achieves style-content separation that cannot be achieved by training each B-LoRA independently. Consolidating the training into only two blocks and separating style and content allows for significantly improving style manipulation and overcoming overfitting issues often associated with model fine-tuning. Once trained, the two B-LoRAs can be used as independent components to allow various image stylization tasks, including image style transfer, text-based image stylization, consistent style generation, and style-content mixing.
UR - http://www.scopus.com/inward/record.url?scp=85209361180&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-72684-2_11
DO - 10.1007/978-3-031-72684-2_11
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:85209361180
SN - 9783031726835
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 181
EP - 198
BT - Computer Vision – ECCV 2024 - 18th European Conference, Proceedings
A2 - Leonardis, Aleš
A2 - Ricci, Elisa
A2 - Roth, Stefan
A2 - Russakovsky, Olga
A2 - Sattler, Torsten
A2 - Varol, Gül
PB - Springer Science and Business Media Deutschland GmbH
T2 - 18th European Conference on Computer Vision, ECCV 2024
Y2 - 29 September 2024 through 4 October 2024
ER -